Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: gap junctions ; dye-coupling ; connexin43 ; parathyroid hormone ; prostaglandin E2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Connexin43 (Cx43) forms gap junctions that mediate intercellular communication between osteoblasts. We have examined the effects of prostaglandin E2 (PGE2) and parathyroid hormone (PTH) on gap junctional communication in the rat osteogenic sarcoma cells UMR 106-01. Incubation with either PGE2 or PTH rapidly (within 30 min) increased transfer of negatively charged dyes between UMR 106-01 cells. This stimulatory effect lasted for at least 4 h. Both PGE2 and PTH increased steady-state levels of Cx43 mRNA, but only after 2-4 h of incubation. Transfection with a Cx43 gene construct linked to luciferase showed that this effect of PTH was the result of transcriptional upregulation of Cx43 promoter. Stimulation of dye coupling and Cx43 gene transcription were reproduced by forskolin and 8Br-cAMP. Exposure to PGE2 for 30 min increased Cx43 abundance at appositional membranes in UMR 106-01, whereas total Cx43 protein levels increased only after 4-6 h of incubation with either PGE2 or PTH. Inhibition of protein synthesis by cycloheximide did not affect this early stimulation of dye coupling, but it significantly inhibited the sustained effect of PTH and forskolin on cell coupling. In summary, both PTH and PGE2, presumably through cAMP production, enhance gap junctional communication in osteoblastic cell cultures via two mechanisms: initial rapid redistribution of Cx43 to the cell membrane, and later stimulation of Cx43 gene expression. Modulation of intercellular communication represents a novel mechanism by which osteotropic factors regulate the activity of bone forming cells. J. Cell. Biochem. 68:8-21, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...