Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (69)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 59 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The rate of leucine incorporation into brain proteins was studied in rats with experimental brain tumors produced by intracerebral transplantation of the glioma clone F98. Incorporation was measured with [14C]leucine using a controlled infusion technique for maintaining constant specific activity of [14C]leucine in plasma, followed by quantitative autoradiography and biochemical tissue analysis. After 45 min the specific activity of free [14C]leucine in plasma was 2.5–3 times higher than in brain and brain tumor, indicating that the precursor pool for protein synthesis was fueled both by exogenous (plasma-derived) and endogenous (proteolysis-derived) amino acids. Endogenous recycling of amino acids amounted to 73% of total free leucine pool in brain tumors and to 60–70% in normal brain. Taking endogenous amino acid recycling into account, leucine incorporation was 78.7 ± 16.0 nmol/g of tissue/min in brain tumor, and 17.2 ± 4.2 and 9.7 ± 3.3 nmol/g/min in normal frontal cortex and striatum, respectively. Leucine incorporation within tumor tissue was markedly heterogeneous, depending on the local pattern of tumor proliferation and necrosis. Our results demonstrate that quantitative measurement of leucine incorporation into brain proteins requires estimation of recycling of amino acids derived from proteolysis and, in consequence, biochemical determination of the free amino acid precursor pool in tissue samples. With the present approach such measurements are possible and provide the quantitative basis for the evaluation of therapeutic interventions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Regional [14C]leucine incorporation into brain proteins was studied in gerbils after global ischemia for 5 min and recirculation times of 45 min to 7 days, using a combination of quantitative autoradiography and biochemical analysis. After recirculation for 45 min, incorporated radioactivity was reduced to ∼20–40% of control values in all ischemic brain regions. Specific activity of the tracer, in contrast, was increased, a finding indicating that the reduced incorporation of radioactivity was not due to reduced tracer influx from plasma or a dilution of the tracer by increased proteolysis. After recirculation for 6 h, [14C]leucine incorporation returned to control levels in all regions except the CA1 sector of the hippocampus, where it amounted to 〈50%. After 1 day, protein synthesis in the CA1 sector returned to ∼70% of control values, followed by a secondary decline to 〈50% after 3 days and returned to near control values after 7 days. Histological evaluations revealed selective neuronal death in the CA1 sector of the hippocampus after 3 days of recirculation. The complex time course of protein synthesis in the CA1 sector suggests a biphasic mode of injury, which may be related to similar changes of calcium homeostasis. The final return to near normal after CA1 neurons have disappeared is explained by astroglial proliferation and demonstrates that at this time protein synthesis is not a marker of neuronal viability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 64 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effect of three metabolic inhibitors—iodoacetate, potassium cyanide, and potassium arsenate—on neuronal viability was studied in primary rat cortical and hippocampal CA1 neuronal cultures. Iodoacetate (0.1 mM) applied for 5 min to 8-day-old cultures resulted in delayed neuronal death within 3–24 h in cortical and hippocampal CA1 neurons. Neuronal degeneration was preceded by transient inhibition of energy metabolism to ∼40% and a permanent inhibition of protein synthesis to ∼50%. The inhibition of protein synthesis and the neuronal death were prevented by the free radical scavenger vitamin E but not by the glutamate antagonist MK-801. Removal of calcium during iodoacetate exposure could not protect against toxicity, and there was no increase of intracellular calcium concentration during and shortly after iodoacetate treatment. Cyanide and arsenate produced only partial neuronal degeneration, even at a dose of 10 mM. These observations demonstrate that brief exposure of neurons to low concentrations of iodoacetate produces a delayed type of neuronal death that is not mediated by either calcium or glutamate. The therapeutic effect of vitamin E points to a free-radical mediated injury and suggests that this type of pathology may also be involved in delayed neuronal death after transient energy depletion in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 49 (1987), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Putrescine, spermidine, and spermine levels were measured in the cortex, caudoputamen, and hippocampus of rats during 30 min of severe forebrain ischemia (induced by occlusion of both carotid and vertebral arteries) and subsequent recirculation. During ischemia, polyamine levels did not change significantly. During postischemic recirculation, however, putrescine levels dramatically increased whereas those of spermine and spermidine did not change, with the exception of the severely damaged caudoputamen, where the concentration declined after 24 h. The increase of putrescine is explained by postischemic activation of ornithine decarboxylase and inhibition of S-adenosylmethionine decarboxylase. It is suggested that the accumulation of putrescine during postischemic recirculation may be responsible for the delayed neuronal death occurring after ischemia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 50 (1988), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Fluorine-18-labeled ortho or para isomers of l-fluorophenylalanine were used in double-label experiments together with l-[3H]phenylalanine for amino acid incorporation into cerebral proteins of Mongolian gerbil brain. It was demonstrated by qualitative regional comparison of the 18F and 3H autoradiographic images that l-p-[18F]fluo-rophenylalanine is incorporated into proteins and exhibits a regional cerebral protein synthesis pattern. To a minor extent, l-p-fluorophenyl[3–14C]alanine and l-o-[18F]fluo-rophenylalanine are hydroxylated in vivo to form labeled tyrosine or tyrosine analogues that are incorporated into cerebral proteins as well. The advantage and validity of the application of l-p-[18F]fluorophenylalanine with positron emission tomography for noninvasive studies of cerebral protein synthesis in humans are evaluated on the basis of an experimental animal approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Neurons from cerebral cortex and hippocampal CA1 sector exhibit a striking difference in vulnerability to transient ischemia. To establish whether this difference is due to the inherent (pathoclitic) properties of these neurons, the ischemic susceptibility was studied in primary cortical and hippocampal cultures by using a new model of argon-induced in vitro ischemia. Neuronal cultures were exposed at 37°C for 10–30 min to argon-equilibrated glucose-free medium. During argon equilibration, Po2 declined to 〈2.5 torr within 1 min and stabilized shortly later at ∼1.3 torr. After 30 min of in vitro ischemia, total adenylate was 〈45% and ATP content 〈15% of control in both types of culture. Cytosolic calcium activity increased from 15 to 50 nM. Reoxygenation of cultures after in vitro ischemia led to delayed neuronal death, the severity of which depended on the duration of in vitro ischemia but not on the type of neuronal cultures. Energy charge of adenylate transiently returned to ∼90% of control after 3 h, but ATP content recovered only to 40% and protein synthesis to 〈35%. Cytosolic calcium activity continued to rise after ischemia and reached values of ∼500 nM after 3 h. The new argon-induced in vitro ischemia model offers major advantages over previous methods, but despite this improvement it was not possible to replicate the differences in cortical and hippocampal vulnerability observed in vivo. Our study does not support the hypothesis that selective vulnerability is due to an inherent pathoclitic hypersensitivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Regional protein synthesis of brain was measured by quantitative autoradiography in normo- and hypothermic rats submitted to 30 min of four-vessel occlusion. The tracer, [14C]leucine, was applied by controlled intravenous infusion to achieve constant plasma specific activity, and the admixture by proteolysis of unlabeled amino acids to the brain amino acid precursor pool was corrected by measuring the ratio of the labeled-to-unlabeled leucine distribution space in plasma and brain. In normothermic rats preischemic protein synthesis rate was 16.0 ± 3.2, 9.2 ± 3.4, 15.5 ± 2.8, and 15.5 ± 3.1 nmol of leucine/g/min (mean ± SD) in the frontal cortex, striatum, hippocampal CA1 sector, and thalamus, respectively. After 30 min of ischemia at a constant brain temperature of 36°C and a recirculation time of 1 h, protein synthesis was reduced in these regions to 6, 9, 8, and 36%, respectively. With ongoing recirculation, protein synthesis gradually returned to normal within 3 days in all areas except in the stratum pyramidale of the hippocampal CA1 sector where inhibition of neuronal protein synthesis was irreversible. Lowering of brain temperature to 30°C during ischemia did not prevent the early global postischemic depression of protein synthesis, but promoted recovery to or above normal within 6 h in all areas including the stratum pyramidale of the CA1 sector. Improvement of protein synthesis in the CA1 sector was associated with improved neuronal survival, which increased from 1% in the normothermic to 69% in the hypothermic animals. These observations suggest that the protective effect of mild hypothermia on ischemic injury of the hippocampal CA1 sector is mediated by the reversal of the postischemic inhibition of protein synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 28 (1977), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Rats were subjected to cerebral compression ischaemia for 15min and were subsequently recirculated with blood for periods up to 3 h. In vivo incorporation of intravenously administered L-[1–14C]valine into total brain proteins was found to be severely inhibited (about 20% of controls) after 45 min of recirculation. After 3 h, protein synthesis had increased, the specific radioactivity of proteins then being about 40% of controls. The post-ischaemic inhibition of protein synthesis was accompanied by a breakdown in polyribosomes and a concomitant increase in ribosomal subunits. In vitro incorporation of L-[1–14C]phenylalanine by a postmitochondrial supernatant system derived from animals subjected to 15 min ischaemia and 15 min recirculation was also severely reduced and showed, in contrast to control animals, no response to the addition of a specific inhibitor of polypeptide chain initiation (Poly(I)). Together with the in vivo accumulation of ribosomal subunits this indicates a block in peptide chain initiation during the early stages of recirculation.Polyribosomes from animals subjected to 15 min ischaemia without recirculation showed a normal rate of in vitro protein synthesis which was inhibited by Poly(I) to a similar extent as polyribosomes from control animals. These results suggest that the post-ischaemic inhibition in chain initiation develops during the early stages of recirculation rather than during the ischaemic period itself.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 23 (1974), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: —Complete cerebral ischemia was produced in normothermic anaesthetized cats by clamping the innominate and the left subclavian arteries combined with lowering the blood pressure. After 1 h of ischemia, ATP was no longer present in detectable amounts. Total adenine nucleotides were reduced to 34 per cent of the normal level. The breakdown of guanine nucleotides was less marked, with small amounts of GTP still being present at the end of the ischemic period. In animals with signs of functional recovery after 3–7 h of recirculation, ATP was resynthesized to 62 per cent of the control level. Total adenine nucleotides increased to 68 per cent and the adenylate energy change—[ATP + 1/2 ADP]/[AMP + ADP + ATP]—was re-established to within 7 per cent of the pre-ischemic value. Radiochromatography of nucleotides following intravenous injection of [14C]formate indicated a marked enhancement of postischemic purine de novo synthesis. Purine nucleosides and free bases which accumulated during ischemia, were partially re-utilized by salvage pathways: adenosine was rephosphorylated to AMP by adenosine kinase (EC 2.7.1.20); inosine and hypoxanthine were re-used via IMP in a reaction mediated by hypoxanthine phosphoribosyltransferase (EC 2.4.2.8).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 36 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Regional glucose distribution in brain slices was assessed by a bioluminescence technique. The reaction is based on light emission of luminiferous marine bacteria, Vibrio fischeri, induced by NADPH. Freeze-dried brain slices were covered by a solution which contained: (a) enzymes and substrates for glucose oxidation and NADPH formation and (b) an extract of Vibrio fischeri for the bioluminescence reaction. Glucose-induced bioluminescence was recorded on photographic film. Patterns of regional decrease in glucose concentration were demonstrated in cat brains after occlusion of the left middle cerebral artery. This decrease correlated well with a concomitant depletion of ATP and an increase in NADH-fluorescence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...