Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (13)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 23 (1988), S. 3894-3902 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Miscible blends of rigid poly(vinyl chloride), PVC, and epoxidized natural rubber (ENR) having 50 mol % epoxidation level, are prepared in a Brabender Plasticorder by the melt-mixing technique. Changes in Brabender torque and temperature, density, dynamic mechanical properties and DSC thermograms of the samples are studied as a function of blend composition. The PVC-ENR blends behave as a compatible system as is evident from the singleT g observed both in dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The moderate level broadening of theT g zone in blends is due to microinhomogeneity, which may arise from the particle structures of PVC perturbing the molecular level mixing of PVC and ENR. Scanning electron microscopic studies were conducted on nitric acid-etched samples and the results showed continuous structures of blend components as well as the occurrence of solvent-induced cracks in high PVC blends.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 23 (1988), S. 3903-3909 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Mechanical properties and fracture of melt-blended poly(vinyl chloride) (PVC) and epoxidized natural rubber (ENR) having 50 mol % epoxidation level are studied at different compositions. The effect of blend ratio on tensile strength, tear strength, elongation at break, tension set after failure, and hardness are determined. The stress-strain behaviour of low ENR blends exhibits yielding and necking, whereas that of high ENR blends exhibits soft elastomeric deformation. At higher compositions of ENR, plots of tensile strength, tear strength, and hardness against blend composition are concave in nature; and plots of the elongation at break deviate markedly from the additive value with a pronounced maximum occurring at the 70wt% composition of ENR. The scanning electron microscopic examination of fracture surfaces of blends does not show any features of phase separation of ENR or PVC. The tensile fracture surface of rigid PVC exhibits partially fused particle structures of PVC and that of blends exhibits features of shearing and horizontal discontinuous striations. The torn surface of rigid PVC shows evidence of intrinsic crazing and that of blends shows features of shear fibrils, vertically changed discontinuous striations, steps, and unstable and stable tear fronts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 24 (1989), S. 3491-3496 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A study on the tensile and tear failure of miscible blends of plasticized poly (vinyl chloride), PVC, and epoxidized natural rubber (ENR) was carried out. Fractographs were taken in a scanning electron microscope in order to obtain an insight into the failure mechanism of the samples. It was found that low ENR blends failed by shearing in tensile testing, and they exhibited irregular stick-slip deformation and characteristics like vulcanizates in tear testing. Blends of plasticized PVC and ENR were more flexible than the individual components. As a result of the geometrical effect the tear fracture surface has rougher features than the tensile fracture surface. Sinusoidal wavy tear patterns in the form of a typical sine wave and rectified half sine wave of the fracture surface are characteristic features of tear resistant non-vulcanizates of rubber-like materials. Moreover, the study revealed that there were no features of phase separation of PVC and ENR due to incompatibility at any of the fracture surfaces examined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 24 (1989), S. 688-692 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Tear failure of natural rubber (NR) filled with high density polyethylene (HDPE) was studied by scanning electron microscopy (SEM). The tear strength of NR was increased by the addition of HDPE. It was found that HDPE forms physical links with NR. The retention of tear strength by ageing attains an optimum value with HDPE loading.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 391-400 
    ISSN: 0887-624X
    Keywords: cardanol ; polyurethane ; thermoplastic polyurethane ; differential scanning calorimetry ; dynamic mechanical thermal analyzer ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A novel thermoplastic polyurethane was prepared from cardanol, a renewable resource and a waste of the cashew industry. Cardanol was recovered from cashew nut shell liquid (CNSL) by double vacuum distillation. It was characterized by CHN analysis and IR, 1H-NMR, and 13C-NMR spectroscopy techniques. Cardanol is a meta-substituted long chain phenol. The long aliphatic chain unit substituent was found to be a monoene. The monomer, 4-[(4-hydroxy-2-pentadecenylphenyl)diazenyl]phenol was prepared from cardanol. It was a dihydroxy compound as characterized by CHN analyzer, UV, and 1H-NMR spectroscopy. The polyurethane was synthesized from this dihydroxy compound by the treatment with 4,4′-diphenylmethane diisocyanate (MDI) in dimethylformamide (DMF) solvent at 80-90°C under nitrogen atmosphere. The polymer was characterized by 1H-NMR, FTIR, and UV spectroscopy. The elemental analysis was done for determining the percentage content of C, H, and N, and the intrinsic viscosity [η] of polymer showed 1.85 dL/gm. Thermogravimetric investigations (TGA) of the cardanol, the dihydroxy compound, and the polyurethane were performed to study their decomposition. The semicrystalline nature of the PU was confirmed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analyzer (DMTA). The wide-angle X-ray diffraction (WAXS) study of PU shew a broad amorphous halo indicative of absence of crystallinity in the polymer, which has been explained as due to strong hydrogen bonding in the hard phase. PU may possibly be useful as a telecommunication and as a nonlinear optical material. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 391-400, 1998
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 1352-1359 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Blends of ethylene methyl acrylate (EMA) and poly(dimethylsiloxane) rubber (PDMS) are demonstrated to be miscible. The miscibility results in a single and composition-dependent glass transition temperature. IR spectra of the blends provide direct evidence of chemical reaction between EMA and PDMS rubber.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of the ethylene-methylacrylate copolymer as a chemical compatibilizer in the 50:50 blend of low-density polyethylene (LDPE) and polydimethylsiloxane rubber (PDMS) has been studied in detail. Ethylene-methylacrylate (EMA) reacted with PDMS rubber during melt-mixing at 180°C to form EMA-grafted PDMS rubber (EMA-g-PDMS) in situ, which acted as a compatibilizer in the LDPE-PDMS rubber blend. An optimum proportion of the compatibilizer (EMA) was found to be 6 wt % based on results of dynamic mechanical analysis, adhesion studies, and phase morphology. Lap shear adhesion between the phases increased significantly on incorporation of 6 wt % of EMA. Dynamic mechanical analysis showed a single glass transition (Tg) peak at -119°C. This was further supported by X-ray diffraction studies, which exhibited a remarkable increase in the degree of crystallinity and phase morphology and showed a drastic reduction in the size of the dispersed phase at the optimum concentration of EMA. © 1993 John Wiley & Sons, Inc.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 58 (1995), S. 1947-1957 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The blends of epoxidized natural rubber (50 mol %) (ENR) and poly(ethylene-co-acrylic acid) (PEA) (6 wt %) are demonstrated to be partially miscible up to 50% by weight of PEA and completely miscible beyond this proportion. The miscibility has been confirmed by a DSC study which exhibits a single second-order transition (Tg) for the 30 : 70 and 50 : 50 (ENR : PEA) blends. For the 70 : 30 (ENR : PEA) blend, the Tg's shift toward an intermediate value but do not merge to form a single Tg, making the blend partially miscible. The miscibility has been assigned to the esterification reaction between - OH groups formed in situ during melt blending of ENR and - COOH groups of PEA. The occurrence of such reactions have been confirmed by UV and IR spectroscopic studies. The existence of a single phase of the blends beyond 50 wt % of PEA has been shown by SEM studies. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 55 (1995), S. 1747-1755 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Rheological studies of the blends of poly(ethylene-co-methyl acrylate) (EMA) and poly(dimethyl siloxane) (PDMS) rubber have been carried out at various temperatures and different shear rates by a Monsanto processability tester. The melt viscosities of the blends are found to be higher than that calculated as per the additivity rule, showing a positive deviation, an indication of synergism present in the blends during melt processing. This confirms our earlier finding that the blends are miscible throughout the composition range. The activation energy of flow of the blends are always higher than that calculated as per the additivity rule. The comparatively higher activation energy for the 30 : 70 EMA-PDMS rubber blend among the systems studied confirms our earlier finding that extent of reaction between EMA and PDMS rubber is significantly higher at this proportion of the blends studied. This substantiates the miscibility between blends of EMA and PDMS rubber throughout the composition range. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 51 (1994), S. 2157-2164 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The chemical crosslink density (CLD) and network structure of natural rubber (NR) vulcanizates, modified with phosphorylated cardanol prepolymer (PCP), have been studied by equilibrium swelling and other chemical methods. The PCP-modified NR vulcanizates showed lower CLD, as compared to the unmodified NR samples, the decrease being lesser for the semiefficient vulcanization (SEV) system, as compared to the conventional (CV) and efficient (EV) vulcanization system. The superior tensile characteristics of the PCP-modified vulcanizates of the SEV system is presumed to be partly due to the presence of an entangled network structure between the aliphatic segment of PCP and the isoprene chains, as evident from X-ray diffraction studies. The critical role of Zn++ions in the crosslinking reactions, especially at higher concentrations of PCP, was evident from the increase in CLD at higher concentrations of ZnO. The reduction in the IR absorption intensity, in the presence of ZnO, indicated the probable complex formation of Zn++ions with the phosphate groups of PCP. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...