Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1985-1989  (2)
  • 1989  (2)
Material
Years
  • 2005-2009
  • 1985-1989  (2)
Year
  • 1
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution of muscarinic acetylcholine receptor protein (mAChR) in the rat forebrain and upper brainstem was described by using a monoclonal antibody (M35) raised against mAChR purified from bovine forebrain homogenates. A method is investigated for light microscopic (LM) and electronmicroscopic (EM) immunocytochemical visualization of reactivity to mAChR-proteins. Putative cholinoceptive neurons including their dendrites were found immunoreactive in the cortical mantle, hippocampus, basal ganglia, amygdala, thalamus and several midbrain regions. In the neocortex, immunoprecipitate with M35 was mainly present in layer 5 pyramidal cells, some layer 3 pyramidal neurons and layer 2 stellate cells, all including their characteristic dendritic profiles of both basal and apical dendrites. In the hippocampus, a variety of pyramidal, granular and non-pyramidal celltypes were stained in various hippocampal cell layers, in the dentate hilus and in stratum oriens of cornu ammonis. Moreover, positively reacting cells occurred in central and lateral amygdala, all parts of the basal ganglia and ventral pallidum. The thalamus was very richly provided with labeled neurons in several nuclei but notably numerous in the ventrolateral, anteroventral and geniculate nuclei. In cortex and hippocampus also some staining of astrocytes occurred. Electron microscopic study of the intracellular distribution of M35 immunoreactivity in all cases showed dense precipitates in the soma cytoplasm in close association with the golgi apparatus, but conspicuous absence near the endoplasmic reticulum. Immunoprecipitate can be followed within the dendritic tree along the microtubular transport system, up to proximal and distal postsynaptic membrane positions, apposing non labeled presynaptic endings. Muscarinic receptor subtype recognition by M35 will be discussed by comparing M35 distribution with cholinergic innervation patterns, muscarinic receptor ligand binding studies and localization of muscarinic receptor subtype mRNAs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ [u.a.] : Wiley-Blackwell
    Journal of Orthopaedic Research 7 (1989), S. 344-351 
    ISSN: 0736-0266
    Keywords: Cryopreservation ; Articular cartilage ; Chondrocytes ; Cell culture ; Transplantation ; Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: For osteochondral allograft transplantation to be successful, chondrocytes must survive preservation and retain their capacity to produce normal matrix components: proteoglycans and Type II collagen. Clinical success with osteochondral allograft transplantation has created an increased demand for supplies of suitable cartilage-bearing grafts. This demand has stimulated attempts to find successful methods for low temperature storage of cartilage for “banking” and heightened interest in cartilage cryobiology. In order to achieve the maximum viability of cryopreserved articular cartilage, previous comprehensive studies have focused on rates and temperatures of freezing, cryoprotective agents, and methods and influences of thawing. This study presents evidence that cryopreserved articular chondrocytes maintain their ability to grow in tissue culture following thawing and to produce normal matrix components. Chondrocytes isolated from Japanese white rabbits were divided into groups of fresh controls and experimental cryopreserved cells. Cells were incubated in dimethylsulfoxide, frozen at a rate of -1°C/min, stored at -79°C, rapidly thawed, and plated for culture, Growth rates were comparable in all groups. In all groups, typical chondroid characteristics were maintained throughout 14 days of culture. Typical cartilage phenotypic characteristics included maintenance of polygonal and rhomboidal cells, cell aggregation, proteoglycan production, and Type II collagen synthesis. This investigation strongly indicates that articular chondrocyte cryopreservation yields viable, functional cells and although these results cannot be directly extrapolated to intact adult articular cartilage, they do give further support for low temperature banking of cartilage-bearing allografts for transplantation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...