Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009
  • 1990-1994  (2)
  • 1991  (2)
Years
  • 2005-2009
  • 1990-1994  (2)
Year
Keywords
Language
  • 1
    Publication Date: 2014-02-26
    Description: The description of chain length distributions in macromolecular reaction kinetics leads to so-called countable systems of differential equations. In particular, when the appearing reaction rate coefficients depend on the chain length of the reacting macromolecules itself, an efficient numerical treatment of these systems is very difficult. Then even the evaluation of the right-hand side of the system can become prohibitively expensive with respect to computing time. In this paper we show how the discrete Galerkin method can be applied to such problems. The existing algorithm CODEX is improved by use of a multiplicative error correction scheme for time discretization and a new type of numerical preprocessing by means of a Gauss summation. Both ideas are exemplary for a wide class of approximation types and are described very briefly here. The new numerical techniques are tested on an example from soot formation, where the coagulation of molecules is modeled in terms of reaction coefficients depending on the surface of the particles and their collision frequency.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: Countable systems of ordinary differential equations appear frequently in chemistry, physics, biology and statistics. They can be considered as ordinary differential equations in sequence spaces. In this work, a fully adaptive algorithm for the computational treatment of such systems is developed. The method is based on a time discretization of an abstract Cauchy problem in Hilbert space and a discrete Galerkin approach for the discretization of the arising stationary subproblems. The Galerkin method uses orthogonal functions of a discrete variable, which are generated by certain weight functions. A theory of countable systems in the associated weighted sequence spaces is developed as well as a theory of the Galerkin method. The Galerkin equations are solved adaptively either by use of analytical properties of the orthogonal functions or by an appropriate numerical summation. The resulting algorithm CODEX is applied to examples of technological interest, in particular from polymer chemistry.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...