Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Opus Repository ZIB  (3)
  • 1995-1999  (3)
  • 1995  (3)
Source
  • Opus Repository ZIB  (3)
Years
  • 1995-1999  (3)
Year
Keywords
Language
  • 1
    Publication Date: 2014-02-26
    Description: This paper presents a mathematical derivation of a model for quantum-classical molecular dynamics (QCMD) as a {\em partial} classical limit of the full Schrödinger equation. This limit is achieved in two steps: separation of the full wavefunction and short wave asymptotics for its ``classical'' part. Both steps can be rigorously justified under certain smallness assumptions. Moreover, the results imply that neither the time-dependent self-consistent field method nor mixed quantum-semi-classical models lead to better approximations than QCMD since they depend on the separation step, too. On the other hand, the theory leads to a characterization of the critical situations in which the models are in danger of largely deviating from the solution of the full Schrödinger equation. These critical situations are exemplified in an illustrative numerical simulation: the collinear collision of an Argon atom with a harmonic quantum oscillator.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: The interaction potential of molecular systems which are typically used in molecular dynamics can be split into two parts of essentially different stiffness. The strong part of the potential forces the solution of the equations of motion to oscillate on a very small time scale. There is a strong need for eliminating the smallest time scales because they are a severe restriction for numerical long-term simulations of macromolecules. This leads to the idea of just freezing the high frequency degrees of freedom (bond stretching and bond angles). However, the naive way of doing this via holonomic constraints is bound to produce incorrect results. The paper presents a mathematically rigorous discussion of the limit situation in which the stiffness of the strong part of the potential is increased to infinity. It is demonstrated that the average of the limit solution indeed obeys a constrained Hamiltonian system but with a {\em corrected soft potential}. An explicit formula for the additive potential correction is given and its significant contribution is demonstrated in an illustrative example. It appears that this correcting potential is definitely not identical with the Fixman-potential as was repeatedly assumed in the literature.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: The paper studies Hamiltonian systems with a strong potential forcing the solutions to oscillate on a very small time scale. In particular, we are interested in the limit situation where the size $\epsilon$ of this small time scale tends to zero but the velocity components remain oscillating with an amplitude variation of order ${\rm O}(1)$. The process of establishing an effective initial value problem for the limit positions will be called {\em homogenization} of the Hamiltonian system. This problem occurs in mechanics as the problem of realization of holonomic constraints, in plasma physics as the problem of guiding center motion, in the simulation of biomolecules as the so called smoothing problem. We suggest the systematic use of the notion of {\em weak convergence} in order to approach this problem. This methodology helps to establish unified and short proofs of the known results which throw light on the inherent structure of the problem. Moreover, we give a careful and critical review of the literature.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...