Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1996  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Numerische Mathematik 72 (1996), S. 481-499 
    ISSN: 0945-3245
    Keywords: Mathematics Subject Classification (1991): 65N30, 65N55, 35J85
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Summary. We derive globally convergent multigrid methods for discrete elliptic variational inequalities of the second kind as obtained from the approximation of related continuous problems by piecewise linear finite elements. The coarse grid corrections are computed from certain obstacle problems. The actual constraints are fixed by the preceding nonlinear fine grid smoothing. This new approach allows the implementation as a classical V-cycle and preserves the usual multigrid efficiency. We give $1-O(j^{-3})$ estimates for the asymptotic convergence rates. The numerical results indicate a significant improvement as compared with previous multigrid approaches.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: We consider the fast solution of large, piecewise smooth minimization problems as resulting from the approximation of elliptic free boundary problems. The most delicate question in constructing a multigrid method for a nonlinear, non--smooth problem is how to represent the nonlinearity on the coarse grids. This process usually involves some kind of linearization. The basic idea of monotone multigrid methods to be presented here is first to select a neighborhood of the actual smoothed iterate in which a linearization is possible and then to constrain the coarse grid correction to this neighborhood. Such a local linearization allows to control the local corrections at each coarse grid node in such a way that the energy functional is monotonically decreasing. This approach leads to globally convergent schemes which are robust with respect to local singularities of the given problem. The numerical performance is illustrated by approximating the well-known Barenblatt solution of the porous medium equation.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...