Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Opus Repository ZIB  (6)
  • 2020-2024  (6)
  • 2015-2019
  • 2024  (3)
  • 2021  (3)
Source
  • Opus Repository ZIB  (6)
Years
Year
Language
  • 1
    Publication Date: 2023-08-02
    Description: Line planning in public transport involves determining vehicle routes and assigning frequencies of service such that travel demands are satisfied. We evaluate how line plans, which are optimal with respect to in-motion costs (IMC), the objective function depending purely on arc-lengths for both user and operator costs, performs with respect to the value of resources consumed (VRC). The latter is an elaborate, socio-economic cost function which includes discomfort caused by delay, boarding and alighting times, and transfers. Even though discomfort is a large contributing factor to VRC and is entirely disregarded in IMC, we observe that the two cost functions are qualitatively comparable.
    Language: English
    Type: reportzib , doc-type:preprint
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-03
    Description: In dieser Arbeit wird ein graphenbasiertes Modell zur Einbindung von Preissystemen des öffentlichen Nahverkehrs in Routing-Algorithmen vorgestellt. Jeder Knoten des Graphen repräsentiert einen abstrakten Preiszustand einer Route und ist an einen tatsächlichen Preis gekoppelt. Damit sind sehr einfache und konzise Beschreibungen von Tarifstrukturen möglich, diesich algorithmisch behandeln lassen. Durch das zeitgleiche Tracken eines Pfades im Routinggraphen im Ticketgraphen kann schon während einer Routenberechnung der Preis bestimmt werden. Dies ermöglicht die Berechnung von preisoptimalen Routen. An den Tarifsystemen der Verkehrsverbünde MDV (Mitteldeutscher Verkehrsverbund) und VBB (Verkehrsverbund Berlin-Brandenburg) wird die Konstruktion des Modells detailliert erläutert.
    Language: German
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-03
    Description: Air freight is usually shipped in standardized unit load devices (ULDs). The planning process for the consolidation of transit cargo from inbound flights or locally emerging shipments into ULDs for outbound flights is called build-up scheduling. More specifically, outbound ULDs must be assigned a time and a workstation subject to both workstation capacity constraints and the availability of shipments which in turn depends on break-down decisions for incoming ULDs. ULDs scheduled for the same outbound flight should be built up in temporal and spatial proximity. This serves both to minimize overhead in transportation times and to allow workers to move freight between ULDs. We propose to address this requirement by processing ULDs for the same outbound flight in batches. For the above build-up scheduling problem, we introduce a multi-commodity network design model. Outbound flights are modeled as commodities; transit cargo is represented by cargo flow volume and unpack and batch decisions are represented as design variables. The model is solved with standard MIP solvers on a set of benchmark data. For instances with a limited number of resource conflicts, near-optimal solutions are found in under two hours for a whole week of operations.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-16
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-19
    Description: We study the solution of the rolling stock rotation problem with predictive maintenance (RSRP-PdM) by an iterative refinement approach that is based on a state-expanded event-graph. In this graph, the states are parameters of a failure distribution, and paths correspond to vehicle rotations with associated health state approximations. An optimal set of paths including maintenance can be computed by solving an integer linear program. Afterwards, the graph is refined and the procedure repeated. An associated linear program gives rise to a lower bound that can be used to determine the solution quality. Computational results for six instances derived from real-world timetables of a German railway company are presented. The results show the effectiveness of the approach and the quality of the solutions.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-15
    Description: The rolling stock rotation problem with predictive maintenance (RSRP-PdM) involves the assignment of trips to a fleet of vehicles with integrated maintenance scheduling based on the predicted failure probability of the vehicles. These probabilities are determined by the health states of the vehicles, which are considered to be random variables distributed by a parameterized family of probability distribution functions. During the operation of the trips, the corresponding parameters get updated. In this article, we present a dual solution approach for RSRP-PdM and generalize a linear programming based lower bound for this problem to families of probability distribution functions with more than one parameter. For this purpose, we define a rounding function that allows for a consistent underestimation of the parameters and model the problem by a state-expanded event-graph in which the possible states are restricted to a discrete set. This induces a flow problem that is solved by an integer linear program. We show that the iterative refinement of the underlying discretization leads to solutions that converge from below to an optimal solution of the original instance. Thus, the linear relaxation of the considered integer linear program results in a lower bound for RSRP-PdM. Finally, we report on the results of computational experiments conducted on a library of test instances.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...