Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (6)
Years
Year
Language
  • 1
    Publication Date: 2023-03-31
    Description: We present an extension of Taylor's Theorem for the piecewise polynomial expansion of non-smooth evaluation procedures involving absolute value operations. Evaluation procedures are computer programs of mathematical functions in closed form expression and allow a different treatment of smooth operations or calls to the absolute value function. The well known classical Theorem of Taylor defines polynomial approximations of sufficiently smooth functions and is widely used for the derivation and analysis of numerical integrators for systems of ordinary differential- or differential-algebraic equations, for the construction of solvers for continuous non-linear optimization of finite dimensional objective functions and for root solving of non-linear systems of equations. The long term goal is the stabilization and acceleration of already known methods and the derivation of new methods by incorporating piecewise polynomial Taylor expansions. The herein provided proof of the higher order approximation quality of the new generalized expansions is constructive and allows efficiently designed algorithms for the execution and computation of the piecewise polynomial expansions. As a demonstration towards the ultimate goal we will derive a prototype of a {\$}{\$}k{\$}{\$}k-step method on the basis of polynomial interpolation and the proposed generalized expansions.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-31
    Description: Tom Streubel has observed that for functions in abs-normal form, generalized Taylor expansions of arbitrary order $\bar d-1$ can be generated by algorithmic piecewise differentiation. Abs-normal form means that the real or vector valued function is defined by an evaluation procedure that involves the absolute value function $|...|$ apart from arithmetic operations and $\bar d$ times continuously differentiable univariate intrinsic functions. The additive terms in Streubel's expansion are abs-polynomial, i.e. involve neither divisions nor intrinsics. When and where no absolute values occur, Moore's recurrences can be used to propagate univariate Taylor polynomials through the evaluation procedure with a computational effort of $\mathcal O({\bar d}^2)$, provided all univariate intrinsics are defined as solutions of linear ODEs. This regularity assumption holds for all standard intrinsics, but for irregular elementaries one has to resort to Faa di Bruno's formula, which has exponential complexity in $\bar d$. As already conjectured we show that the Moore recurrences can be adapted for regular intrinsics to the abs-normal case. Finally, we observe that where the intrinsics are real analytic the expansions can be extended to infinite series that converge absolutely on spherical domains.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-31
    Description: Tom Streubel has observed that for functions in abs-normal form, generalized Taylor expansions of arbitrary order $\bar d-1$ can be generated by algorithmic piecewise differentiation. Abs-normal form means that the real or vector valued function is defined by an evaluation procedure that involves the absolute value function $|...|$ apart from arithmetic operations and $\bar d$ times continuously differentiable univariate intrinsic functions. The additive terms in Streubel's expansion are abs-polynomial, i.e. involve neither divisions nor intrinsics. When and where no absolute values occur, Moore's recurrences can be used to propagate univariate Taylor polynomials through the evaluation procedure with a computational effort of $\mathcal O({\bar d}^2)$, provided all univariate intrinsics are defined as solutions of linear ODEs. This regularity assumption holds for all standard intrinsics, but for irregular elementaries one has to resort to Faa di Bruno's formula, which has exponential complexity in $\bar d$. As already conjectured we show that the Moore recurrences can be adapted for regular intrinsics to the abs-normal case. Finally, we observe that where the intrinsics are real analytic the expansions can be extended to infinite series that converge absolutely on spherical domains.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-31
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-31
    Description: Due to the current and foreseeable shifts in energy production, the trading and transport operations of gas will become more dynamic, volatile, and hence also less predictable. Therefore, computer-aided support in terms of rapid simulation and control optimization will further broaden its importance for gas network dispatching. In this paper, we aim to contribute and openly publish two new mathematical models for regulators, also referred to as control valves, which together with compressors make up the most complex and involved types of active elements in gas network infrastructures. They provide full direct control over gas networks but are in turn controlled via target values, also known as set-point values, themselves. Our models incorporate up to six dynamical target values to define desired transient states for the elements' local vicinity within the network. That is, each pair of every two target values defines a bounding box for the inlet pressure, outlet pressure as well as the passing mass flow of gas. In the proposed models, those target values are prioritized differently and are constantly in competition with each other, which can only be resolved dynamically at run-time of either a simulation or optimization process. Besides careful derivation, we compare simulation and optimization results with predictions of the commercial simulation tool SIMONE.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-08-17
    Description: Due to the current and foreseeable shifts towards carbon dioxide neutral energy production, which will likely result in balancing fluctuating renewable energy generation by transforming power-to-gas-to-power as well as building a large-scale hydrogen transport infrastructure, the trading and transport operations of gas will become more dynamic, volatile, and hence also less predictable. Therefore, computer-aided support in terms of rapid simulation and control optimization will further broaden its importance for gas network dispatching. In this paper, we aim to contribute and openly publish two new mathematical models for regulators, also referred to as control valves, which together with compressors make up the most complex and involved types of active elements in gas network infrastructures. They provide direct control over gas networks but are in turn controlled via target values, also known as set-point values, themselves. Our models incorporate up to six dynamical target values to define desired transient states for the elements' local vicinity within the network. That is, each pair of every two target values defines a bounding box for the inlet pressure, outlet pressure as well as the passing mass flow of gas. In the proposed models, those target values are prioritized differently and are constantly in competition with each other, which can only be resolved dynamically at run-time of either a simulation or optimization process. Besides careful derivation, we compare simulation and optimization results with predictions of the widely adopted commercial simulation tool SIMONE, serving as our substitute for actual real-world transport operations.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...