Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1980-1984  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 87 (1984), S. 297-309 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In the contact aureole of the Lilesville granite and comagmatic Pee Dee gabbro, N.C., greenschist-facies phyllites of the Carolina slate belt have been overprinted by a series of metamorphic reactions producing opx-bearing hornfelses and migmatitic gneisses. In the exterior aureole the slate belt assemblage (chl+ms+ep+ab+qz) gives way to the continuous reaction assemblages (chl+bt+cd+ ms+ab±ep+qz), (bt+cd+ms+An8–29+qz), (bt+cd+ kf+ms+pl+qz), (bt+cd+als±ms+kf+pl+qz), and (bt+cd+ga+kf+pl+qz), from lowest to highest grade. The interior aureole, interpreted as part of the floor of the granite, bears the continuous and discontinuous reaction assemblages (bt+cd+als+kf+pl+qz),(bt+cd+kf+ pl+qz), and, near the gabbro, (bt+cd+ga+opx+kf+ pl+qz). The leucosomes of the migmatitic interior aureole are predominantly trondhjemites with the assemblage (An35–45+qz±bt±cd±kf). Restites in the migmatitic interior aureole contain the AFM assemblages (bt), (bt + cd), (bt+cd+als), and (bt+cd+ga), plus kf, An40–50, and qz. Contact metamorphism was isobaric at 4.0–5.1 or 2.0–3.5 kb depending on choice of aluminosilicate triple point; temperatures reached 650° C in the migmatitic interior aureole and approached 750° C near the gabbro; $${\text{P}}_{{\text{H}}_{\text{2}} {\text{O}}}$$ was less than 0.8 in the migmatites, and was lower in the interior aureole and in the high grade exterior aureole. Partial melting in the migmatitic interior aureole took place during dynamothermal metamorphism caused by the magmatic diapir. Incipient melting occurred by the reaction bt+cd+kf+pl+qz+w = liquid. The melt was H2O-undersaturated and coefficients of the reactants were weighted heavily toward the felsic minerals; the proportion of felsic minerals in the leucosomes was controlled in part by modal abundance of kf, pl, and qz available for melting. The incorporation of K into biotite by subsolidus reactions, coupled with the high thermal stability and low solubility of biotite in a felsic melt, are responsible for the trondhjemitic composition of the early anatectic liquids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-601X
    Keywords: PACS. 25.75.Dw Particle and resonance production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: Production cross-sections of charged pions, kaons and antikaons have been measured in C+C and C+Au collisions at beam energies of 1.0 and 1.8 AGeV for different polar emission angles. The kaon and antikaon energy spectra can be described by Boltzmann distributions whereas the pion spectra exhibit an additional enhancement at low energies. The pion multiplicity per participating nucleon M(π+)/〈A part〉 is a factor of about 3 smaller in C+Au than in C+C collisions at 1.0 AGeV whereas it differs only little for the C and the Au target at a beam energy of 1.8 AGeV. The K+ multiplicities per participating nucleon M(K+)/ 〈A part〉 are independent of the target size at 1 AGeV and at 1.8 AGeV. The K- multiplicity per participating nucleon M(K-)/ 〈A part〉 is reduced by a factor of about 2 in C+Au as compared to C+C collisions at 1.8 AGeV. This effect might be caused by the absorption of antikaons in the heavy target nucleus. Transport model calculations underestimate the K-/K+ ratio for C+C collisions at 1.8 AGeV by a factor of about 4 if in-medium modifications of K-mesons are neglected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...