Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 2873-2885 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The leakage current density–applied field (J−EA) characteristics of (BaxSr1−x)Ti1+yO3+z (BSTO) thin film capacitors with Pt electrodes that have been annealed in forming gas (95% Ar 5% H2 or D2) were investigated over the temperature range from −60 to +60 °C. Forming gas annealing significantly increased the leakage current density. The J–EA characteristics exhibited features that could not be fully explained by either a simple thermionic emission or tunneling (Fowler–Nordeim) formalism. Using the general charge transport theory of Murphy and Good, we show that the J–EA characteristics can be successfully interpreted in terms of tunneling of electrons through the interfacial Schottky barrier with the peak in energy distribution of the incident carriers strongly dependent on applied field. At high applied fields the energy distribution of incident carriers is peaked near the Fermi level in the electron injecting metal electrode at all temperatures considered in this study, leading to almost temperature independent J–EA characteristics. At lower applied fields the peak in energy distribution shifts towards the conduction band edge where thermally assisted tunneling occurs and a more pronounced temperature dependence of the current density is observed. Good agreement between experiment and theory is demonstrated for a reasonable parameter set for BSTO thin films strongly suggesting that the high leakage current density often observed after forming gas annealing results from tunneling of electrons through the interfacial Schottky barrier. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...