Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 6409-6415 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The formation of C54 TiSi2 using Ti–Nb alloys deposited on polycrystalline Si substrates was studied by means of in situ x-ray diffraction and resistance measurements during temperature ramping. Alloys with Nb contents ranging from 0 to 13.6 at. % were used. The formation temperature of C54 TiSi2 was reduced in the presence of Nb. However, the addition of Nb in Ti did not cause fundamental changes in the evolution of resistance versus temperature. This latter observation suggests that the mechanism for the formation of C54 TiSi2 remained the same in spite of the enhancement effect. For alloys with up to 8 at. % of Nb, the C49 TiSi2 phase formed first, as with pure Ti. When annealing the alloy with 13.6 at. % Nb, neither C49 TiSi2 nor C54 were found in the usual temperature ranges, instead, C40 (Nb,Ti)Si2 was observed. This phase transformed to C54 (Nb,Ti)Si2 above 950 °C. The apparent activation energy associated with the formation of C54 TiSi2 was obtained by annealing the samples at four different ramp rates from 3 to 27 K/s; it decreased continuously from 3.8 to 2.5 eV with increasing Nb content from 0 to 8 at. %. The apparent activation energy for the formation of C40 (Nb,Ti)Si2 was found to be 2.6 eV. The possible physical meaning, or lack thereof, of the high activation energies derived from experimental measurements is extensively discussed. A qualitative model is proposed whereby nucleation would be rate controlling in pure TiSi2, and interface motion in samples with 8 at. % Nb. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 30 (2000), S. 523-543 
    ISSN: 0084-6600
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Three methods have recently been developed to enhance the formation of the low-resistivity C54 phase of TiSi2, the most widely used silicide contact in ultra-large-scale integration devices. These methods are (a) ion implantation of a transition metal into the Si before Ti deposition; (b) deposition of a thin transition metal interlayer between the Si and Ti; and (c) codeposition of Ti alloyed with a transition metal. Each of these methods decreases the C49-to-C54 transformation temperature by 〉100oC and improves the probability of phase formation in narrow lines by increasing the nucleation site density. In this paper, we identify the aspects of phase formation that are shared by these three methods, review the methodology by which they were developed, and summarize the applications to silicon devices. Mechanisms that are responsible for the enhanced formation of C54 TiSi2 are reviewed, based on a combination of temperature-controlled in situ measurements of resistance, X-ray diffraction, and optical scattering, coupled with ex situ studies of phase formation and morphology. The main mechanisms are identified as enhanced nucleation of the C54 phase by a reduction of grain size in the C49 phase and the creation of crystallographic templates of the C40 disilicide phase and the metal-rich Ti5Si3 phase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 408-412 (Aug. 2002), p. 1567-1572 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...