Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 6329-6338 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A good example of macromolecular recognition is found in the interaction of the two monomers of the dimeric superoxide dismutase protein found in Photobacterium leiognathi. We have produced, by molecular dynamics simulation techniques, a specific path for the rupture of the dimer and calculated the effective force involved in the process by extending a well established free energy calculation scheme, the molecular dynamics blue moon approach to rare events. Within this picture we have generalized the approach to a vectorial reaction coordinate and performed a number of different simulations in function of the monomer-momomer separation, at fixed relative orientation. We find a deep minimum and we compute the height of the free energy barrier to break the dimer. As for the system characterization we have found that, when the separation distance increases, the protein structure is stable and the monomer-monomer interface is uniformly hydrated. Moreover, identifying the crucial contacts for the stabilization of the dimer, we have found the sequence of the different microscopic events in the monomer-monomer recognition and we have developed a view of the process which requires a merging of standard explanations, in agreement with the recent picture of recognition as a dynamical process mixing the various mechanisms previously considered [Kimura et al., Biophys. J. 80 635 (2001)]. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 101 (2000), S. 225-242 
    ISSN: 1572-9613
    Keywords: surface-hopping dynamics ; non-adiabatic dynamics ; mixed quantum-classical dynamics ; density matrix
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Non-adiabatic dynamics in mixed quantum-classical systems is investigated. The mixed quantum-classical system comprises a quantum system coupled to a classical environment. The starting point for the analysis is an evolution equation for the density matrix expressed in a basis of adiabatic quantum states that describes the full quantum dynamics of the subsystem and its coupling to the bath. Since the quantum dynamics influences the evolution of the “classical” degrees of freedom, a description in terms of single Newtonian trajectories is not possible. Through explicit calculations of a two-level quantum system coupled to a low dimensional bath we examine the details of mixed quantum-classical dynamics and its representation in terms of an ensemble of surface-hopping classical trajectory segments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...