Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (4)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 71 (2000), S. 3634-3639 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: In this article a study of the transmission factor of the Omicron EA125 analyzer equipped with the universal lens is presented. The procedure is based on a model by Cross and Castle [J. Electron Spectrosc. Relat. Phenom. 22, 53 (1981)] and is applicable to every spectrometer which can be operated in the constant analyzer energy (CAE) and in the constant retarding ratio measuring mode. The advantage of the method is its independence on the sample and on the inelastic mean free path of the electrons. We find that the transmission factor for the CAE mode is proportional to Ekin−1 for most measuring setups. This dependence is predicted by theory for an ideal analyzer. Deviations from this behavior are observed if the retarding ratio for a given kinetic energy is too small. The limit value of the retarding ratio for ideal behavior, i.e., an Ekin−1 transmission factor, depends on the analyzer entrance slit aperture which has been selected. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 768-780 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Scanning anode field emission microscopy is used to map the electron emission current I(x,y) under constant anode voltage and the electron extraction voltage V(x,y) under constant emission current as a function of tip position on carbon based thin film emitters. The spatially resolved field enhancement factor β(x,y) is derived from V(x,y) maps. It is shown that large variations in the emission site density (ESD) and current density can be explained in terms of the spatial variation of the field enhancement β(x,y). Comparison of β(x,y) and I(x,y) shows that electron emission currents are correlated to the presence of high aspect ratio field enhancing structures. We introduce the concept of field enhancement distribution f(β), which is derived from β(x,y) maps to characterize the field emission properties of thin films. In this context f(β)dβ gives the number of emitters on a unit surface with field enhancement factors in the interval (β,β+dβ). It is shown experimentally for the carbon thin film emitters investigated that f(β) has an exponential dependence with regard to the field enhancement factor β. The field enhancement distribution function f(β) can be said to give a complete characterization of the thin film field emission properties. As a consequence, the emitted current density and ESD can be optimized by tuning f(β) of the emitting thin film. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 1036-1038 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The current-induced emission degradation of a carbon nanotube (CNT) thin-film electron emitter is studied under constant emission current for different current levels, using a scanning anode field emission microscope. A permanent emission degradation is observed for emission currents higher than 300 nA per CNT and is associated with resistive heating at the CNT–substrate interface for the sample under investigation. A second field-induced emission degradation mechanism, associated with the removal of CNTs from the substrate, is also reported. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 60 (2000), S. 1009-1018 
    ISSN: 1572-8943
    Keywords: calcium fluoride silicate ; calcium release ; crystallization ; dental application
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The crystallization behaviour of a glass in the SiO2-CaO-F system was analyzed using differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Three crystalline phases were detected according to ICDD patterns. The first phase formed at 583°C was identified as CaF2. The morphology was spherulitic with a diameter of approximately 100 nm. The second phase was formed at 664°C. It was identified as calcium fluoride silicate ‘Ca2SiO2F2’ (ICDD 35-0002). SEM investigation showed that the crystals were spherulitic with a diameter smaller than 100 nm. The crystals were precipitated in the volume of the glass and homogeneously distributed. As a third phase, cristobalite crystallized at 895°C. The simultaneous release of calcium and fluorine ions from the vitreous glass in lactate buffer solution at pH 4.0, simulating an acidic oral environment, was investigated using X-ray photoelectron spectroscopy (XPS). The release of calcium and fluorine ions is of special interest for dental applications. The atomic ratios of the components Si, Ca and F at the glass surface after different leaching periods were determined. In order to investigate the leaching process, concentration profiles were measured using ion beam sputtering with Ar+ -ions. The dependence of the atomic ratios of Si, Ca and F on the sputter time was determined in order to measure the depth of the leaching layers. Most probably, the release of calcium and fluoride was controlled by a surface layer rich in calcium and flourine ions which dissolved with increasing leaching time. After 2 min leaching, a fluoride-rich surface layer measuring approximately 10 nm was detected. The atomic ratios of Si, Ca and F were different from the bulk composition ratios in a surface reaction layer of 800 nm thickness. After 30 min leaching time, a calcium- and fluoride-rich surface layer approximately 50 nm thick was formed. The bulk composition was reached at a depth of approximately 500 nm. The main component in the surface layer, after 12 days leaching in acidic environment, was silicon.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...