Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 24 (2001), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Fracture behaviour of polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) under mixed-mode loading conditions was studied for several weight fractions of PC and ABS. Mode I and mixed-mode fracture tests were carried out by using compact–tension–shear specimens. At a certain value of mixed-mode loading ratio KII /KI  a crack of the shear type will initiates at the initial crack tip. Fracture toughness increases under mixed-mode loading with an increase in the mode II component, whereas it reduces with the appearance of a shear-type fracture. Fracture toughness and the appearance of a shear-type fracture depends on the blending ratio of PC and ABS. The transition to shear-type fracture occurs at lower value of KII /KI for resins with higher fracture toughness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Apatite layer was formed on polyethyleneterephthalate (PET) substrate by the following biomimetic process. The PET substrate was placed on granular particles of a CaO, SiO2-based glass in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma to form apatite nuclei on their surfaces. The apatite nuclei was then grown into a continuous layer by subsequently soaking the substrate in SBF under air or CO2 atmosphere in which CO2 partial pressure in the ambient was adjusted to 14.8 kPa to increase the content of carbonate ion to a level nearly equal to that of blood plasma. The increase in the content of carbonate ions in SBF changed the Ca/P atomic ratio of the apatite from 1.51 to 1.63, content of CO3 2- ions from 2.64 to 4.56 wt %, and lattice constants a from 94.32 to 94.23 nm and c from 68.70 to 68.83 nm, respectively. The Ca/P ratio and lattice constants of the apatite formed in SBF under CO2 atmosphere were approximately identical to those of bone apatite, i.e. Ca/P atomic ratio 1.65, content of CO3 2- ion 5.80 wt % and lattice constants a 94.20 and c 68.80 nm. This indicates that an apatite with composition and structure nearly identical to those of bone apatite can be produced in SBF by adjusting its ion concentrations including the content of carbonate ions to be equal to those of blood plasma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...