Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Physiologia plantarum 114 (2002), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Changes in photosynthetic capacity of the seaweed Gracilaria tenuistipitata Zhang et Xia acclimated to monochromatic blue light were studied. For this purpose, affinity for external inorganic carbon, light use efficiency, carbonic anhydrase (CA; EC 4.2.1.1) activity and content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were determined in thalli acclimated to 45 µmol m−2 s−1 of blue light. Thalli cultured in white light of the same photon fluence rate were used as a control. Lower maximal photosynthetic rates (i.e. at light and carbon saturation) were obtained in the thalli cultured in blue light. Apparently, this lower photosynthetic capacity was not due to differences in affinity and/or capacity for use of external dissolved inorganic carbon (DIC) since (1) CA activity did not change significantly and (2) similar values of photosynthetic conductance for DIC at alkaline pH were obtained (0.95 × 10−6 m s−1). In addition, the pool size of Rubisco was not modified by the blue light treatment since there were no significant differences in Rubisco content between white (12.14% of soluble proteins) and blue light (12.13% of soluble proteins) treatments. In contrast, Fv/Fm was increased by 11% and photosynthetic efficiency for oxygen production was reduced by 50% in blue light. This absence of correlation between quantum yields for maximum stable charge separation of photosystem II and oxygen evolution suggests that blue light promote changes in rates of photosynthetic electron flow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words: Carbonic anhydrase –Gracilaria– Irradiance – pH – Photosynthesis – Ribulose-1,5-bisphosphate carboxylase/oxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Regulation by irradiance level of the mechanism for dissolved inorganic carbon (DIC) acquisition was examined in the red macroalga Gracilaria tenuistipitata Zhang et Xia. For this purpose, affinity for external DIC, carbonic anhydrase (CA; EC 4.2.1.1) activity and content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were determined in thalli grown at 45 and 500 μmol photons m−2 s−1. Oxygen evolution rates declined by 50% when the medium pH was changed from 8.1 to 8.7, and the pH compensation point attained was ca. 9.2. These characteristics were unaffected by the light treatments. In contrast, photosynthetic conductance for DIC at pH 8.7 was doubled in thalli grown at high irradiance compared with those grown at low irradiance (to 0.74 × 10−6 from 0.33 × 10−6 m s−1). Photosynthetic rates at saturating DIC concentration were also higher by 60% in thalli grown at high irradiance. These differences could not be attributed to changes in the use of external DIC, since external CA activity did not vary. Although the irradiance level did not modify the pool size of Rubisco, Rubisco content expressed on a chlorophyll a basis was almost doubled at high irradiance. These results likely indicate that the internal transport of DIC towards the active-site of Rubisco, rather than the external use of DIC, is enhanced in the thalli grown at high irradiance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...