Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Fatigue & fracture of engineering materials & structures 26 (2003), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this work stress concentration factors (SCFs), Kt for a round bar with a fillet are considered on the basis of exact solutions, now available for special cases, and accurate numerical results. Then, a convenient Kt formula useful for any dimensions of the fillet is proposed. The conclusions can be summarised as follows: (i) For the limiting cases of deep (d) and shallow (s) fillet, the body force method is used to calculate the Kt values. Then, the formula are obtained as Ktd and Kts. (ii) On the one hand, upon comparison of Kt and Ktd, it is found that Kt is nearly equal to Ktd if the fillet is deep or blunt. (iii) On the other hand, if the fillet is sharp or shallow, Kt is mainly controlled by Kts and the fillet depth. (iv) The fillet shape is classified into several groups according to the fillet radius and fillet depth. Then the least squares method is applied for calculation of Kt/Ktd and Kt/Kts. (v) Finally, a convenient formula is proposed that is useful for any dimensions of fillet in a round bar. The formula give SCFs with less than 1% error in most cases for any dimensions of fillet under tension and bending.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 26 (2000), S. 281-287 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Atom-order void formation in a defective crystalline material is studied by using molecular dynamics method (MD). Infinite long cylinder, which is constructed with nickel atoms with a line of vacancies, is subjected to multiaxial tensile strain field by moving periodic boundary and the atoms on the outer surface of the cylinder. When the load exceeds a critical value, sudden appearance of the void is observed and it develops rapidly. The developed void does not disappear by only unloading and relaxation, in spite of the system with the void has higher potential energy than that without void. The biaxial or the triaxial load is necessary to the atom order void formation. Moreover, the results by the MD simulations are compared with theoretical solution for nonlinear elastic solid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 70 (2000), S. 377-386 
    ISSN: 1432-0681
    Keywords: Key words Curved crack ; compositional profile ; thermal shock ; functionally graded material ; finite element method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Thermal cracking in a ceramic/metal functionally graded plate is discussed. When a functionally graded plate is cooled from high temperature, curved or straight crack paths are experimentally observed on the ceramic surface. One of the reasons that make the crack paths to differ are the thermal or mechanical conditions. In order to clarify the influence of these conditions on the crack path, the crack propagation is simulated using finite element method.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 70 (2000), S. 612-624 
    ISSN: 1432-0681
    Keywords: Key words Elasticity, body force method, singular integral equation, numerical analysis, stress concentration factor, ellipsoidal inclusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary  This paper deals with interaction problems of elliptical and ellipsoidal inclusions under bending, using singular integral equations of the body force method. The problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknown functions are densities of body forces distributed in the x,y and r,θ,z directions in infinite bodies having the same elastic constants as those of the matrix and inclusions. In order to satisfy the boundary conditions along the elliptical and the ellipsoidal boundaries, the unknown functions are approximated by a linear combination of fundamental density functions and polynomials. The present method is found to yield the exact solutions for a single elliptical or spherical inclusion under a bending stress field. It yields rapidly converging numerical results for interface stresses in the interaction of inclusions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1619-6937
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary The temperature distribution in structural elements in practical cases usually changes in two or three directions. Based on such facts, aiming at more effectiveness, a functionally graded material (FGM), whose properties change in two or three directions, is introduced, that investigated here called bi-directional FGM. The current study aims at the formulation, solution and investigation of a semiinfinite edge cracked FGM plate problem with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading. The solution of the boundary value problem that one obtains from the mathematical formulation of the current crack problem under thermal loading reduces to an integral equation with a generalized Cauchy kernel. This integral equation contains many two-dimensional double strongly singular integrals, which can be solved numerically. In order to separate the singular terms and overcome the divergence of the integrals an asymptotic analysis for the singular parts in the obtained integral equation was carried out. Also, the exact solution for many singular integrals is obtained. The obtained numerical results are used in the representation of the thermal stress intensity factor versus the thermal/mechanical nonhomogeneous parameters. The numerical results show that it is possible to reduce and control the thermal stress intensity factor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...