Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In morphine-dependent rats, low naloxone doses have been shown to induce conditioned place aversion, which reflects the negative motivational component of opiate withdrawal. In contrast, higher naloxone doses are able to induce a ‘full’ withdrawal syndrome, including overt somatic signs. The c-fos gene is commonly used as a marker of neuronal reactivity to map the neural substrates that are recruited by various stimuli. Using in situ hybridization, we have analysed in the brain of morphine-dependent rats the effects of acute withdrawal syndrome precipitated by increasing naloxone doses on c-fos mRNA expression. Morphine dependence was induced by subcutaneous implantation of slow-release morphine pellets for 6 days and withdrawal was precipitated by increasing naloxone doses inducing the motivational (7.5 and 15 µg/kg) and somatic (30 and 120 µg/kg) components of withdrawal. Our mapping study revealed a dissociation between a set of brain structures (extended amygdala, lateral septal nucleus, basolateral amygdala and field CA1 of the hippocampus) which exhibited c-fos mRNA dose-dependent variations from the lowest naloxone doses, and many other structures (dopaminergic and noradrenergic nuclei, motor striatal areas, hypothalamic nuclei and periaqueductal grey) which were less sensitive and recruited only by the higher doses. In addition, we found opposite dose-dependent variations of c-fos gene expression within the central (increase) and the basolateral (decrease) amygdala after acute morphine withdrawal. Altogether, these results emphasize that limbic structures of the extended amygdala along with the lateral septal nucleus, the basolateral amygdala and CA1 could specifically mediate the negative motivational component of opiate withdrawal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The c-fos gene is expressed in the central nervous system in response to various neuronal stimuli. Using in situ hybridization, we examined the effects of chronic morphine treatment and withdrawal on c-fos mRNA in the rat brain, and particularly within identified striatal neurons. Morphine dependence was induced by subcutaneous implantation of two pellets of morphine for 6 days and withdrawal was precipitated by administration of naltrexone. Placebo animals and morphine-dependent rats showed a very weak c-fos mRNA expression in all the structures studied. Our study emphasized the spatial variations in c-fos mRNA expression, and also revealed a peak expression of c-fos mRNA at 1 h after naltrexone-precipitated withdrawal in the projection areas of dopaminergic neurons, noradrenergic neurons and in several regions expressing opiate receptors. Interestingly, morphine withdrawal induces c-fos mRNA expression in the two efferent populations of the striatum (i.e. striatonigral and striatopallidal neurons) both in the caudate putamen and nucleus accumbens. Moreover, the proportions of activated neurons during morphine withdrawal are different in the caudate putamen (mostly in striatopallidal neurons) and in the shell and core parts of the nucleus accumbens (mostly in striatonigral neurons). The activation of striatopallidal neurons suggests a predominant dopaminergic regulation on c-fos gene expression in the striatum during withdrawal. On the contrary, c-fos induction in striatonigral neurons during withdrawal seems to involve a more complex regulation like opioid–dopamine interactions via the µ opioid receptor and the D1 dopamine receptor coexpressed on this neuronal population or the implication of other neurotransmitter systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...