Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 3-Amino-1,2,4-triazole (3-AT) is known as an inhibitor of catalase to whose active center it specifically and covalently binds. Subcellular fractionation and immunoelectronmicroscopic observation of the yeast Candida tropicalis revealed that, in 3-AT-treated cells in which the 3-AT was added to the n-alkane medium from the beginning of cultivation, catalase transported into peroxisomes was inactivated and was present as insoluble aggregated forms in the organelle. The aggregation of catalase in peroxisomes occurred only in these 3-AT-treated cells and not in cells in which 3-AT was added at the late exponential growth phase. Furthermore, 3-AT did not affect the transportation of catalase into peroxisomes. The appearance of aggregation only in cells to which 3-AT was added from the beginning of cultivation suggests that, in the process of catalase transportation into yeast peroxisomes, some conformational change may take place and that correct folding may be inhibited by the binding of 3-AT to the active center of catalase. Accordingly, 3-AT will be an interesting compound for investigation of the transport machinery of the peroxisomal tetrameric catalase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A starch-utilizing Saccharomyces cerevisiae strain was constructed by cell surface engineering. Distribution of the heterologous glucoamylase–α-agglutinin fusion protein on the yeast cell was analyzed by indirect fluorescence microscopy using an anti-glucoamylase antibody. Most of the intense fluorescence was first localized in the small bud, then observed on the entire cell wall of the daughter and mother cells. Fluorescence also accumulated at the neck region. These observations suggest that the display of the heterologous protein on the cell surface is carried with other cell wall components to the areas in which the cell wall is newly synthesized; the distribution is controlled by the cell cycle. Then, the heterologous protein-encoding gene was expressed in a sec1 mutant, in which secretory vesicles accumulate under restrictive temperature, and the produced protein was detected by immunoelectron microscopy. Most of the gold particles that reacted with the fusion protein were not localized in vesicles but in expanding endoplasmic reticulum. This phenomenon may be due to overproduction of the heterologous protein which was designed to be displayed on the cell wall. Artificial production of heterologous protein may have caused a relative shortage of glycosyl phosphatidylinositol anchors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...