Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 2197-2202 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Etching of SiO2 with CF4 in three types of high density–low pressure (5×1011 cm−3, 1–10 mTorr) etch tools: electron cyclotron resonance (ECR), inductively coupled (ICP), and helicon (HRF) is described. Although the physical processes that produce the plasma in the three types of sources are quite different, the etch rate processes are identical when viewed from the wafer sheath boundary. Measurements demonstrate that if sufficient fluorine is present, the etch rate limiting step depends only on the ion energy flux to the wafer, rather than on the details of the chemical species. Etch rate control depends only on the wafer bias power. Experimental results are device independent so the etch rate in high density–low pressure plasma sources does not depend on the plasma source power. Major differences in tool etch rate characteristics are more likely determined by tool wall material (and wall chemistry) and tool geometry rather than the physical process that is used to produce the plasma. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the Phaedrus-T tokamak [R. A. Breun et al., Fusion Technol. 19, 1327 (1991)], Alfvén waves are indirectly driven by a fast wave antenna array. Small fractions of minority ions are shown to have a large effect on the Alfvén spectrum, as measured at the edge. An ion–ion hybrid Alfvén mode has been identified by measuring dispersion properties. Landau damping is predicted to be large and spatially localized. These Alfvénic waves are experimentally shown to generate correlated electron heating and changes in density near the core of the tokamak plasma. Fast wave antenna fields can mode convert at a hybrid Alfvén resonance and provide a promising route to spatially localized tokamak heating and current drive, even for low effective ionic charge Zeff≈1.3–2. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A comparison of phenomenological features of plasmas is made with a special emphasis on radio-frequency induced transport, which are maintained when a set of two closely spaced dual half-turn antennas in a central cell of the Phaedrus-B axisymmetric tandem mirror [J. J. Browning et al., Phys. Fluids B 1, 1692 (1989)] is phased to excite electromagnetic fields in the ion cyclotron range of frequencies (ICRF) with m=−1 (rotating with ions) and m=+1 (rotating with electrons) azimuthal modes. Positive and negative electric currents are measured to flow axially to the end walls in the cases of m=−1 and m=+1 excitations, respectively. These parallel nonambipolar ion and electron fluxes are observed to be accompanied by azimuthal ion flows in the same directions as the antenna-excitation modes m. The phenomena are argued in terms of radial particle fluxes due to a nonambipolar transport mechanism [Hojo and Hatori, J. Phys. Soc. Jpn. 60, 2510 (1991); Hatakeyama et al., J. Phys. Soc. Jpn. 60, 2815 (1991), and Phys. Rev. E 52, 6664 (1995)], which are induced when azimuthally traveling ICRF waves are absorbed in the magnetized plasma column. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...