Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 7448-7454 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A theory is presented which describes the initial direct wafer bonding process. The effect of surface microroughness on the bondability is studied on the basis of the theory of contact and adhesion of elastic solids. An effective bonding energy, the maximum of which is the specific surface energy of adhesion, is proposed to describe the real binding energy of the bonding interface, including the influence of the wafer surface microroughness. Both the effective bonding energy and the real area of contact between rough surfaces depend on a dimensionless surface adhesion parameter, θ. Using the adhesion parameter as a measure, three kinds of wafer contact interfaces can be identified with respect to their bondability; viz. the nonbonding regime (θ 〉12), the bonding regime (θ 〈1), and the adherence regime (1〈θ 〈12). Experimental data are in reasonable agreement with this theory.© 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1858
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Technology
    Notes: Abstract  Surface roughness is one of the crucial factors in silicon fusion bonding. Due to the enhanced surface roughness, it is almost impossible to bond wafers after KOH etching. This also applies when wafers are heavily doped, have a thick LPCVD silicon nitride layer on top or have a LPCVD polysilicon layer of poor quality. It has been demonstrated that these wafers bond spontaneously after a very brief chemical mechanical polishing step. An adhesion parameter, that comprises of both the mechanical and chemical properties of the surface, is introduced when discussing the influence of surface roughness on the bondability. Fusion bonding, combined with a polishing technique, will broaden the applications of bonding techniques in silicon micromachining.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1858
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Technology
    Notes: Abstract  This paper reports on a new method for making some types of integrated optical nanomechanical devices. Intensity modulators as well as phase modulators were fabricated using several silicon micromachining techniques, including chemical mechanical polishing and aligned wafer bonding. This new method enables batch fabrication of the nanomechanical optical devices, and enhances their performance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9304
    Keywords: surface topography ; plasma etching ; cellular orientation ; focal adhesion point ; in vitro ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: During this study, microtechnology and plasma etching were used to produce gratings 1.0 (TiD01), 2.0 (TiD02), 5.0 (TiD05), and 10.0 μm wide (TiD10) into commercially pure titanium wafers. After incubation of rat dermal fibroblast (RDFs) on these surfaces for 3 days, the cells were observed with scanning electron (SEM), transmission electron (TEM), and confocal laser scanning microscopy (CLSM). Results showed that the RDFs as a whole and their stress fibers oriented strictly parallel to the surface pattern on the TiD01 and TiD02 surfaces. On the TiD05 and TiD10 surfaces, this orientation was not observed. In addition, TEM and CLSM demonstrated that the focal adhesion points (FAP) were located mainly on the surface pattern ridges. TEM revealed that FAP were wrapped occasionally around the edges of the ridges. Only the RDFs on both the TiD05 and TiD10 surfaces protruded into the grooves and possessed FAP on the walls of the grooves. Attachment to the groove floor was observed only on the TiD10 textures. Comparison of these results with earlier observations on microtextured silicone rubber substrata suggests that material-specific properties do not influence the orientational effect of the surface texture on the observed RDF cellular behavior. The proliferation rate of the RDFs, however, seems to be much higher on titanium than on silicone rubber substrata. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 425-433, 1998.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...