Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Phaseolus vulgaris-leucoagglutinin ; Hippocampus ; Septum ; Entorhinal cortex ; Limbic system ; Fimbria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The fimbria is a major route for afferent and efferent fibers of the hippocampal formation. However, little is known about the intrinsic organization of the fimbria-fornix complex. In this study, the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHAL) was used to analyze the ultrastructure and topography of identified fiber tracts within the fimbria-fornix. Septo-hippocampal fibers are loosely distributed throughout the fimbria-fornix. Commissural fibers cross the midline in the ventral hippocampal commissure and form a tight fiber bundle in the fimbria. Crossed entorhino-hippocampal fibers cross the midline in the ventral hippocampal commissure rostral to the commissural fiber bundle, and crossed entorhino-entorhinal fibers pass through the dorsal hippocampal commissure. This suggests a topographical organization of fiber tracts within the fimbria-fornix that reflects the laminar organization of the hippocampal target structure: fibers of the diffusely terminating septohippocampal projection are loosely distributed throughout the fimbria-fornix, while those projections that are known to terminate in specific laminae of the hippocampal formation (commissural projection, crossed entorhino-hippocampal projection) form fiber bundles within the fimbria and the ventral hippocampal commissure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Key words Fascia dentata ; Mossy cells ; Interneurons ; Lucifer yellow ; Phaseolus vulgaris leucoagglutinin ; Septohippocampal projection ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Mossy cells in the hilus of the rat dentate gyrus are the main cells of origin of the dentate commissural and associational projections. They project along the septotemporal axis of the dentate gyrus and may thus influence the hippocampal signal flow in a longitudinal direction. To analyze the septal innervation of these hilar neurons, anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHAL) was used in combination with intracellular labeling of mossy cells (Lucifer yellow). Anterogradely labeled septal fibers impinge on proximal and distal dendrites of hilar mossy cells but spare the cell body. In contrast, numerous aspiny hilar neurons, presumably GABAergic interneurons, receive a septal innervation on their somata and proximal primary dendrites. These data demonstrate that septal fibers show a specificity for the dendritic segments of hilar mossy cells. Since mossy cells project predominantly to adjacent hippocampal lamellae, the activity of adjacent portions of the dentate gyrus may be influenced by the septal input onto these neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 120 (1998), S. 399-402 
    ISSN: 1432-1106
    Keywords: Key words Neurotrophin ; Sprouting ; Dentate gyrus ; Mossy fibers ; Timm staining ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In human temporal lobe epilepsy, a loss of hilar neurons followed by the sprouting of recurrent mossy fiber collaterals and the reinnervation of free synaptic sites on granule cell dendrites are discussed as possible mechanisms underlying hippocampal hyperexcitability. Dentate granule cells have been shown to upregulate brain-derived neurotrophic factor (BDNF) as well as TrkB, the high-affinity receptor for BDNF, in response to limbic seizures. This raised the possibility that BDNF is an important factor in hippocampal mossy fiber sprouting. Here we have used slice cultures of hippocampus, in which mossy fibers sprout and form a supragranular plexus in response to granule cell deafferentation, and have compared cultures from early postnatal BDNF-deficient mice and wild-type mice. We demonstrate that there is sprouting of supragranular mossy fibers in cultured slices from both BDNF knock-out and wild-type mice. We conclude that BDNF is not an essential factor for mossy fiber sprouting. However, our data do not exclude a role for BDNF in mossy fiber sprouting in wild-type mice, as compensatory mechanisms might have become effective in the mutant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Previous studies have suggested that target-derived nerve growth factor (NGF) is essential for the survival of cholinergic basal forebrain neurons. Thus, axotomy of septohippocampal neurons in adult rats resulting in the withdrawal of target-derived NGF caused a dramatic loss of choline acetyltransferase (ChAT)-immunoreactive neurons in the medial septum-diagonal band complex. We have recently shown that this loss of immunolabelled neurons does not indicate cell death, since many septohippocampal cholinergic neurons recover their immunoreactivity for ChAT after a long survival time despite disconnection from target-derived neurotrophins. One possibility would be that these surviving ChAT-immunoreactive neurons have gained access to other, probably local, NGF sources. Here we provide evidence that the recovery of ChAT immunoreactivity after axotomy is not accompanied by a similar recovery of NGF receptor expression in these neurons. In situ hybridization for p75NTR mRNA and trkA mRNA 6 months after bilateral fimbria-fornix transection revealed a substantial loss of labelled cells. In addition, there was a persisting loss of p75NTR-immunoreactive and NGF-immunoreactive medial septal neurons. Cholinergic neurons in controls did not express NGF mRNA, but were heavily immunostained for NGF protein due to receptor-mediated uptake. These data suggest that at least some cholinergic septohippocampal neurons re-express ChAT either independently of NGF or with a reduced need for NGF.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 286 (1996), S. 293-303 
    ISSN: 1432-0878
    Keywords: Key words: Phaseolus vulgaris leucoagglutinin ; Anterograde tracing ; Entorhinal cortex ; Crossed temporo-ammonic pathway ; Crossed temporo-dentate pathway ; Rat (Sprague Dawley)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Neurons of the entorhinal cortex project to the hippocampus proper and dentate gyrus. This projection is called the ”perforant pathway” because it perforates the subiculum; current usage applies this term to all entorhino-hippocampal fibers. However, entorhinal fibers also reach Ammon’s horn via the alveus (”alvear pathway”), an alternative route first described by Cajal. The anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) was used in order to analyze the contribution of this pathway to the temporo-ammonic projection. In the temporal portion of the rat hippocampus, most of the entorhinal fibers reach Ammon’s horn after perforating the subiculum (classical perforant pathway). At more septal levels, the number of entorhinal fibers that take the alvear pathway increases; in the septal portion of the hippocampal formation, most of the entorhinal fibers to hippocampal subfield CA1 reach this subfield via the alveus. These fibers make sharp right-angle turns in the alveus, perforate the pyramidal cell layer, and finally terminate in the stratum lacunosum-moleculare. The crossed temporo-ammonic fibers reach their termination area in the stratum lacunosum-moleculare of CA1 almost exclusively via the alveus. These data indicate that the alveus is a major route by which entorhinal fibers reach their targets in CA1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...