Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (6)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 8013-8021 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A theoretical analysis of the recent femtosecond photoassociation spectroscopy (FPAS) experiment on mercury [U. Marvet and M. Dantus, Chem. Phys. Lett. 245, 393 (1995)] is presented. It is shown that when a thermal distribution of diatom collision pairs is excited from a free to a bound electronic state on a time scale shorter than molecular vibration, an ensemble of coherent wave packets is produced. The dynamics of these wave packets created by the photoassociation pulse can be observed by firing a second probe pulse at variable time delays, and the depletion of the first excited bound state by the probe pulse is detected via fluorescence of the remaining population. Simulations of the FPAS experiment, using both wave packet propagation techniques and perturbation theory, clearly show the vibrational dynamics of the photoassociated transients. It is also demonstrated how the FPAS technique may be used as a tool for controlling the energy, impact parameter, and orientation in bimolecular reactions. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 6864-6868 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The laser control of reactions in solution has recently been a topic of growing interest. The theoretical possibility for such control has now been established. This paper investigates two closely related issues regarding potential practical implementation of condensed phase control schemes. A previous study from our group was able to demonstrate control assuming that a laser field coupled only to a reaction coordinate. The assumption that the laser will not couple to the condensed phase environment is a drastic simplification, and we investigate in this paper how relaxing this simplification may affect the possibility of control. To investigate this phenomenon, we study two cases: that of a laser coupled only to a reaction coordinate which is in turn coupled to a "bath" mode, as compared to the case in which the laser is coupled both to the reaction coordinate and the environmental mode. In another closely related investigation, we study the effect of uncertainty introduced into the controlling pulse. The exact potential of a chemical reaction in solution cannot be known to perfect accuracy. Our results give insights into the challenges which will face attempts at condensed phase chemical reaction control, and point strongly to the need for adaptive algorithms for laser control pulse generation. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 4843-4851 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Control of tunneling in a symmetric double well coupled to a bath via an external field is demonstrated. Optimal control theory is employed to design a laser field which couples to the reaction coordinate and drives a localized wave packet on the reactant side to the product side at a specified target time τ. Both a very quantumlike system (high barrier) and a low barrier double well are examined; excellent results are obtained for a range of reduced bath viscosities. Analysis of the control fields and corresponding localization dynamics shows that the frequency components of the control field are more or less in resonance with eigenstates of the double well and that the laser field enhances the natural dynamics of the individual wells. Future extension to more complicated models where the field couples to the bath is discussed. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 8001-8010 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The control of molecular events by optical fields is sought with the methods of asymptotic inverse tracking, local track generation (model matching), and competitive tracking which are extensions of exact inverse tracking. The methodology is applied to infrared dissociation of a diatomic molecule and selective dissociation of the stronger bond in a highly coupled linear triatomic system. The major appeal of these methods is that they do not require costly iterations unlike other control studies in which optimization techniques are used to design fields to achieve desired molecular objectives. It is found that in exact inverse tracking where a requisite external field is obtained to exactly track a prescribed objective expectation value as a function of time, a high degree of intuition is required to find an a priori objective track such that the required fields are reasonable in terms of intensity and bandwidth. Furthermore, exact inverse tracking does not allow for tracking of multiple observables. The extensions of the inverse tracking method presented in this work help to alleviate these drawbacks. In all of these extensions the requisite field is computed locally in time through minimization of a cost functional which contains terms designed to minimize the error between the objective and actual tracks and also minimize the field fluence. The objective tracks can be prescribed a priori as in exact inverse tracking or from the present evolving system state (local track generation). Competitive tracking allows for the following of multiple observables although none will be tracked exactly. Locally generated tracks (model matching) require less physical intuition because it is easier to specify an objective track with current knowledge of the state of the system. However, the tradeoff with this method is that prediction of the behavior of the tracked observables may be elusive. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 7045-7051 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new two-step procedure for laser control of photodissociation is presented. In the first step of the procedure, we show that control of photodissociation product yields can be exerted through preparation of the initial wave function prior to application of the photodissociation field in contrast to previous laser control studies where attention has focused on the design of the field which induces dissociation. Specifically, for a chosen channel from which maximum product yield is desired and a given photodissociation field, the optimal linear combination of vibrational eigenstates which comprise the initial wave function is found using a straightforward variational calculation. Any photodissociation pulse shape and amplitude can be assumed since the Schrödinger equation is solved directly. Application of this method to control of product yields in the photodissociation of hydrogen iodide is demonstrated. The second step of the control procedure involves the preparation of the coherent superposition of discrete levels obtained from the previous step; design of the preparatory field can be done analytically for two or three level systems as demonstrated here or with other well-studied iterative field design methods. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 1299-1300 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Optimal control theory is argued to be the most general method for designing fields used to induce desired chemical reactions. Other "schemes'' for field design which constrain the field form and introduce limiting dynamical assumptions are shown to be particular solutions of the more general optimal control theory (OCT). © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...