Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 158 (1997), S. 159 -166 
    ISSN: 1432-1424
    Keywords: Key words: Nuclear ion channels — Cation channel — Cell nucleus — Patch clamp — Ion selectivity – Nuclear envelope
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Eucaryotic nuclei are surrounded by a double-membrane system enclosing a central cisterna which is continuous with the endoplasmic reticulum and serves as a calcium store for intracellular signaling. The envelope regulates protein and nucleic acid traffic between the nucleus and the cytoplasm via nuclear pores. These protein tunnels cross through both nuclear membranes and are permeable for large molecules. Surprisingly, patch clamp recordings from isolated nuclei of different cell species have revealed a high resistance of the envelope, enabling tight seals and the resolution of single ion channel activity. Here we present for the first time single-channel recordings from nuclei prepared from neuronal tissue. Nuclei isolated from rat cerebral cortex displayed spontaneous long-lasting large conductances in the nucleus-attached mode as well as in excised patches. The open times are in the range of seconds and channel activity increases with depolarization. The single-channel conductance in symmetrical K+ is 166 pS. The channels are selective for cations with P K/P Na= 2. They are neither permeable to, nor gated by Ca2+. Thus, neuronal tissue nuclei contain a large conductance ion channel selective for monovalent cations which may contribute to ionic homeostasis in the complex compartments surrounding these organelles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: Nicotinic acetylcholine receptor ; topology ; iodination ; mass spectrometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Here we report on the use of iodination of the membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo californica electric tissue in order to define surface-exposed portions of the receptor molecule. Membrane-bound nAChR was 125I-iodinated using the oxidation agent Iodo-Gen. The iodinated subunits were separated by preparative gel electrophoresis, desalted, and cleaved with trypsin. The resulting peptides were separated by reverse-phase HPLC and the radioactive peptides were identified by mass spectrometry and protein sequencing. For the δ-subunit, we identified five iodinated peptides containing the tyrosine residues δTyr17, δTyr74, δTyr365, δTyr372, and δTyr428. The surface exposition of these amino acids is in agreement with the four-transmembrane-segment model (4TM model) of the nAChR, but the assignment to the intra- or extracellular surface is doubtful. According to this model, the N-terminal portion of the receptor subunits including the iodinated residues δTyr17 and δTyr74 is extracellular and δTyr372 as a site of tyrosine phosphorylation is located on the cytoplasmic side. But since this latter residue is among the first to be iodinated using an immobilized iodination agent, its true position with respect to the membrane bilayer is not clear.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...