Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 117 (1995), S. 6048-6056 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Immunogenetics 46 (1997), S. 267-275 
    ISSN: 1432-1211
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  We previously characterized the rabbit recombination activating gene-2 (RAG-2) coding region and a portion of the cDNA. Rabbit RAG-2 mRNA, however, was shown to be approximately twice as large as the predominant form expressed in other vertebrate species, suggesting that it contained additional coding and/or untranslated regions (UTR). In this report, we map and sequence the complete 5′ and 3′ UTRs of the rabbit RAG-2 transcript and identify and sequence the genomic regions from which they are transcribed. The data show that, with the exception of a 300 nucleotide 5′ UTR, almost all of the additional sequence belongs to the 3′ UTR and that the 3′ UTR sequence is transcribed from a single large exon that encodes most of the coding region and all of the 3′ UTR. The 3′ UTR contains four poly A signal sites, the last of which is closely followed by a GU-rich region. The rabbit 3′ UTR has a high level of identity with the homologous region downstream of the human RAG-2 gene but not with the mouse RAG-2 gene. The region of identity extends several hundred nucleotides beyond the transcribed region and terminates in a series of dinucleotide (TG) repeats. The data are discussed in terms of RAG gene and 3′ UTR function, regulation, and evolution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Hernia 1 (1997), S. 1-1 
    ISSN: 1248-9204
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 6 (1995), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Connexin Phenotypes in the Human Heart. Introduction: Gap junction channels are major determinants of intercellular resistance to current flow between cardiac myocytes. Alterations in gap junctions may contribute to development of arrhythmia substrates in patients. However, there is significant interspecies variation in the types and amounts of gap junction subunit proteins (connexins) expressed in disparate regions of mammalian hearts. To elucidate determinants of conduction properties in the human heart, we characterized connexin phenotypes of specific human cardiac tissues with different conduction properties. Methods and Results: The distribution and relative abundance of Cx37, Cx40, Cx43, Cx45, and Cx46 were studied immunohistochemically using monospecific antibodies and frozen sections of the sinoatrial node and adjacent atria, the AV node and His bundle, the bundle branches, and the left and right ventricular walls. Patterns of expression of these connexins in the human heart differed from those in previous animal studies. Sinus node gap junctions were small and sparse and contained Cx45 and apparently smaller amounts of Cx40 but no Cx43. AV node gap junctions were also small and contained mainly Cx45 and Cx40 hut, unlike the sinus node, also expressed Cx43. Atrial gap junctions were larger than nodal junctions and contained moderate amounts of Cx40, Cx43, and Cx45. Junctions in the bundle branches were the largest in size and contained abundant amounts of Cx40, Cx43, and Cx45. Gap junctions in ventricular myocardium contained mainly Cx43 and Cx45; only a very small amount of ventricular Cx40 was detected in subendocardial myocyte junctions and endothelial cells of small to medium sized intramural coronary arteries. Minimal Cx37 and Cx46 immunoreactivity was detected between occasional atrial or ventricular myocytes. Conclusions: The relative amounts of individual connexins and the number and size of gap junctions vary greatly in specific regions of the human heart with different conduction properties. These differences likely play a role in regulating cardiac conduction velocity. Differences in the connexin phenotypes of specific regions of the human heart and experimental animal hearts must he considered in future experimental or modeling studies of cardiac conduction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 6 (1995), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Role of Gap Junctions in Anisotropic Conduction. Electrical activation of the heart requires transfer of current from one discrete cardiac myocyte to another, a process that occurs at gap junctions. Recent advances in knowledge have established that, like most differentiated cells, individual cardiac myocytes express multiple gap junction channel proteins that are members of a multigene family of channel proteins called connexins. These proteins form channels with unique biophysical properties. Furthermore, functionally distinct cardiac tissues such as the nodes and bundles of the conduction system and atrial and ventricular muscle express different combinations of connexins. Myocytes in these tissues are interconnected by gap junctions that differ in a tissue-specific manner in terms of their number, size, and three-dimensional distribution. These observations suggest that both molecular and structural aspects of gap junctions are critical determinants of the anisotropic conduction properties of different cardiac tissues. Expression of multiple connexins also creates the possibility that “hybrid” channels composed of more than one connexin protein type can form, thus greatly increasing the potential for fine control of intercellular ion flow and communication within the heart.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 6 (1995), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Modulation of Cx43 Expression. Introduction: Gap junctions connect cardiac myocytes allowing propagation of action potentials. They contain intercellular channels formed by multiple different connexin proteins. The arrangement and type of gap junctions and the types, function, and interaction of connexin proteins determine intercellular resistance and can thereby influence conduction velocity and the potential for reentrant arrhythmias. Our goal was to develop genetically manipulable models to test the effects of altering expression of a major cardiac connexin (connexin43) on intercellular coupling and expression of other connexin proteins. Methods and Results: BHK cells that are poorly coupled and BWEM ceils that are well coupled were stably transfected with plasmids containing connexin43 cDNA in antisense and sense orientations. RNA blots confirmed expression of the transfected transcripts. Immunoblots showed that connexin43 protein was reduced in the BHK antisense transfectants and increased in the BHK sense transfectants compared to the parental cells. It was not detectably changed in the BWEM antisense transfectant line compared to the BWEM parental cells. Transfection of connexin43 cDNA did not affect production of connexin45 mRNA and protein nor did transfection induce expression of other previously unexpressed connexin mRNAs. Cell coupling was assessed by intercellular diffusion of microinjected Lucifer yellow in confluent cell populations. Lucifer yellow passed to a mean of 3 ± 3 neighboring parental BHK cells, to 8 ± 8 neighbors in the sense connexin43 transfected BHK cells, and to only 2 ± 2 neighbors in the antisense connexin43 transfected BHK cells (P 〈 0.05). In contrast, dye transfer did not differ significantly between the parental BWEM cells (mean transfer = 19 ± 14 cells) and the BWEM connexin43 antisense transfectants (mean transfer = 15 ± 12 cells) (P = 0.20). Conclusions: These data demonstrate that stable transfection with connexin43 cDNA constructs can result in detectable changes in connexin43 expression and cellular coupling without inducing compensatory changes in the cell's connexin phenotype and, therefore, may provide a basis for future attempts at specifically modulating connexin expression and intercellular resistance in cardiac tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The function and location of guard cells uniquely subject them to stress. First, stomatal movements require large fluctuations in the concentration of potassium salts. Second, guard cell inner walls are the first surfaces exposed to evaporation and apoplastic solutes may accumulate there as a result. We have therefore investigated whether guard cells exhibit atypical expression of dehydrin genes because dehydrins accumulate in vegetative tissues in response to water stress. We have also assayed for osmotin mRNA, which is up-regulated in leaves in response to various stresses. mRNA probes for several representative genes were used with RNA extracts from control and water-stressed Vicia faba leaflets. Correlatively, these probes were used with RNA extracts from “isolated’ guard cells that had been incubated with combinations of abscisic acid, mannitol and Ca2+. (Isolated guard cells are epidermal strips sonicated to destroy cells other than guard cells.) Hybridization with the probe prepared for a dehydrin from Pisum sativum (Psdhn 1) was detected in leaf extracts only if the leaf had been stressed. Similarly, after 1- and 6-h incubations with abscisic acid, isolated guard cells contained an mRNA that hybridized with the probe for Psdhn 1. Appearance of this abscisic acid-dependent mRNA required neither mannitol nor exogenous Ca2+. Regardless of the conditions or tissue, no hybridization was detected with the probe against osmotin, but our interpretation of this result is qualified. The simplest conclusion is that atypical expression of dehydrin is not the mechanism by which guard cells cope with their peculiar function and location.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 52 (1996), S. 713-719 
    ISSN: 1600-5740
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The structures of three nitro-substituted phenothiazines [1,3,4-trifluoro-2-nitrophenothiazine, 10-(4-chlorobutyl)-1,3,4-trifluoro-2-nitrophenothiazine and 10-(4-chlorobutyl)-3-nitrophenothiazine] have been determined. The first of these red compounds forms infinite stacks in the solid state, in which donor and acceptor regions of the approximately planar molecules alternate. The molecules of the other two compounds, which have folded, or `butterfly', conformations in the solid state, do not form stacks, presumably because the bulky chlorobutyl substituents cannot be accommodated. The very dark color of solid 3-nitrophenothiazine suggests the presence of extended molecular stacks, but crystals suitable for a structure determination could not be obtained.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 54 (1998), S. 1486-1488 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...