Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 18 (1999), S. 1135-1137 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied electrochemistry 28 (1998), S. 1179-1188 
    ISSN: 1572-8838
    Keywords: functionally graded materials ; porous electrodes ; current distribution ; infiltration processing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract The present paper lays the theoretical foundations of a new production process for functionally graded materials (FGMs). The process is based on the evolution of porosity gradients in porous electrodes which undergo electrochemical dissolution or deposition. The electrodes with graded porosity serve as preforms for the production of graded composites by infiltration processing. A one-dimensional macroscopic model of the porous electrode has been used for the prediction of the porosity gradients. A numerical approach allows utilization of experimentally determined current–potential curves for nonporous electrodes, with the incorporation of changes of the pore structure during the course of the electrode reaction, to predict the porosity gradients. For porous copper cathodes and anodes the results of this model are compared with experimentally observed polarization behavior and porosity distributions for different current densities and electrolyte conductivities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...