Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 3408-3410 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Si/Si oxynitride superlattices, with three periods, have been grown using the two-target alternation magnetron sputtering technique. The thicknesses of Si oxynitride layers and Si layers in the superlattices are 2.0 and 1.4 nm, respectively. Visible electroluminescence (EL) from a semitransparent Au film/(Si/Si oxynitride) superlattice/p-Si structure has been observed. Each EL spectrum of the structure has a dominant peak around 640 nm, a weaker peak around 520 nm, and a shoulder around 820 nm. By comparing the EL from the semitransparent Au film/(Si/Si oxynitride) superlattice/p-Si structure with that from a semitransparent Au film/Si oxynitride film/p-Si structure, we found that the EL efficiency of the former structure is about 2–4 times of that of the latter one. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 650-659 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Impact of water droplets on a flat, solid surface was studied using both experiments and numerical simulation. Liquid–solid contact angle was varied in experiments by adding traces of a surfactant to water. Impacting droplets were photographed and liquid–solid contact diameters and contact angles were measured from photographs. A numerical solution of the Navier–Stokes equation using a modified SOLA-VOF method was used to model droplet deformation. Measured values of dynamic contact angles were used as a boundary condition for the numerical model. Impacting droplets spread on the surface until liquid surface tension and viscosity overcame inertial forces, after which they recoiled off the surface. Adding a surfactant did not affect droplet shape during the initial stages of impact, but did increase maximum spread diameter and reduce recoil height. Comparison of computer generated images of impacting droplets with photographs showed that the numerical model modeled droplet shape evolution correctly. Accurate predictions were obtained for droplet contact diameter during spreading and at equilibrium. The model overpredicted droplet contact diameters during recoil. Assuming that dynamic surface tension of surfactant solutions is constant, equaling that of pure water, gave predicted droplet shapes that best agreed with experimental observations. When the contact angle was assumed constant in the model, equal to the measured equilibrium value, predictions were less accurate. A simple analytical model was developed to predict maximum droplet diameter after impact. Model predictions agreed well with experimental measurements reported in the literature. Capillary effects were shown to be negligible during droplet impact when We(very-much-greater-than)Re1/2. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 145-149 (Oct. 1997), p. 399-404 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...