Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Spatial Distribution of the QT Interval. Introduction: The role of QT dispersion as a predictor of arrhythmia vulnerability has not been consistently confirmed in the literature. Therefore, it is important to identify the electrophysiologic mechanisms that affect QT duration and distribution. We compared the spatial distributions of QT intervals (QTI) with potential distributions on cardiac and body surfaces and with recovery times on the cardiac surface. We hypothesized that the measure of QTI is affected by the presence of the zero potential line in the potential distribution, as well as the sequence of recovery. We also investigated use of the STT area as a possible indicator of recovery times on the cardiac surface. Methods and Results: High-resolution spatial distributions of QTI and potentials were determined on the body surface of human subjects and on the surface of a torso-shaped tank containing an isolated canine heart. Additionally, spatial distributions of QTI, recovery times, and STT areas were determined on the surface of exposed canine hearts. Unipolar electrograms were recorded during atrial and ventricular pacing for normal hearts and cases of myocardial infarction. Regions of shortest QTI always coincided with the location of the zero potential line on the cardiac and body surfaces. On the cardiac surface, in regions away from the zero line, similarities were observed between the patterns of QTI and the sequence of recovery. STT areas and recovery times were highly correlated on the cardiac surface. Conclusion: QTI is not a robust index of local recovery time on the cardiac surface. QTI distributions were affected by the position of the zero potential line, which is unrelated to local recovery times. However, similarities in the patterns of QTI and recovery times in some regions may help explain the frequently reported predictive value of QT dispersion. Preliminary results indicate STT area may be a better index of recovery time and recovery time dispersion on the epicardium than QTI.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 9 (1998), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Multiple Components in the Unipolar Electrogram. Introduction: For many decades, the interpretation of unipolar electrograms (EGs) and ECGs was based on simple models of the heart as a current generator, e.g., the uniform dipole layer, and, more recently, the “oblique dipole layer.” However, a number of recent and old experimental data are inconsistent with the predictions of these models. To address this problem, we implemented a numerical model simulating the spread of excitation through a parallelepipedal myocardial slab, with a view to identifying the factors that affect the shape, amplitude, and polarity of unipolar EGs generated by the spreading wavefront. Methods and Results: The numerical model represents a portion of the left ventricular wall as a parallelepipedal slab (6.5 × 6.5 × 1 cm); the myocardial tissue is represented as an anisotropic bidomain with epi-endocardial rotation of fiber direction and unequal anisotropy ratio. Following point stimulation, excitation times in the entire volume are computed by using an eikonal formulation. Potential distributions are computed by assigning a fixed shape to the action potential profile. EGs at multiple sites in the volume are computed from the time varying potential distributions. The simulations show that the unipolar QRS waveforms are the sum of a “field” component, representing the effect of an approaching or receding wavefront on the potential recorded by a unipolar electrode, and a previously unrecognized “reference” component, which reflects the drift, during the spread of excitation, of the reference potential, which moves from near the positive to near the negative extreme of the potential distribution during the spread of excitation. Conclusion: The drift of the reference potential explains the inconsistencies between the predictions of the models and the actual shapes of the EGs. The drift modifies the slopes of EG waveforms during excitation and recovery and can be expected to affect the assessment of excitation and recovery times and QRS and ST-T areas. Removing the drift reestablishes consistency between potential distributions and electrographic waveforms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 9 (1998), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Useful Lessons from Body Surface Mapping. Body surface potential maps (BSMs) depict the time varying distribution of cardiac potentials on the entire surface of the torso. Hundreds of studies have shown that BSMs contain more diagnostic and prognostic information than can he elicited from the 12-lead ECG. Despite these advantages, body surface mapping has not become a routinely used clinical method. One reason is that visual examination and sophisticated analysis of BSMs do not permit inferring the sequence of excitation and repolarization in the heart with a sufficient degree of certainty and detail. These limitations can be partially overcome by implementing inverse procedures that reconstruct epicardial potentials, isochrones, and ECGs from body surface measurements. Furthermore, ongoing experimental work and simulation studies show that a great deal of information about intramural events can he elicited from measured or reconstructed epicardial potential distributions. Interpreting epicardial data in terms of deep activity requires extensive knowledge of the architecture of myocardial fibers, their anisotropic properties, and the role of rotational anisotropy in affecting propagation and the associated potential fields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Noncontact Endocardial Mapping. Introduction: Mapping endocardial activation and repolarization processes is critical to the study of arrhythmias and selection of therapeutic procedures. Previously, we developed methodology for reconstructing endocardial potentials from potentials measured with a noncontact, intracavitary probe. This study further develops and evaluates the ability of the approach to provide detailed information on the spatiotemporal characteristics of the activation process. Specifically, we reconstructed endocardial electrograms and isochrones throughout the activation process over the entire endocardium during a single beat. Methods and Results: Cavity potentials were measured with a 65-electrode probe placed inside an isolated canine left ventricle. Endocardial potentials were measured simultaneously using 52 electrodes. Potentials were acquired during subendocardial pacing from different locations. Computed electrograms at various sites closely resemble the measured electrograms (correlation coefficient 〉 0.9 at 60% of the electrodes). Computed isochrones locate subendocardial pacing sites with 10-mm accuracy. Two pacing sites, 17 mm apart, were resolved. Critical regions, such as areas of isochrone crowding, were accurately reconstructed. Conclusions: Results indicate the applicability of the approach to mapping the cardiac excitation process on a beat-by-beat basis without occluding the ventricle. The ability of locating electrical events (e.g., single or multiple initiation sites) is demonstrated. Importantly, the method is shown to be capable of reconstructing electrograms over the entire endocardium and determining nonuniformities of activation spread (e.g., areas of slow conduction). These capabilities are important to clinical application in the electrophysiology laboratory and experimental studies of arrhythmias in the intact animal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 26 (1998), S. 37-47 
    ISSN: 1573-9686
    Keywords: Interpolation ; Mapping ; Bioelectric potentials ; Inverse problem ; Epicardial potentials ; Body surface potential mapping ; Field method ; Interpolating biopotentials ; Electrocardiogram
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Mapping of bioelectric potentials over a given surface (e.g., the torso surface, the scalp) often requires interpolation of potentials into regions of missing data. Existing interpolation methods introduce significant errors when interpolating into large regions of high potential gradients, due mostly to their incompatibility with the properties of the three-dimensional (3D) potential field. In this paper, an interpolation method, inverse-forward (IF) interpolation, was developed to be consistent with Laplace's equation that governs the 3D field in the volume conductor bounded by the mapped surface. This method is evaluated in an experimental heart–torso preparation in the context of electrocardiographic body surface potential mapping. Results demonstrate that IF interpolation is able to recreate major potential features such as a potential minimum and high potential gradients within a large region of missing data. Other commonly used interpolation methods failed to reconstruct major potential features or preserve high potential gradients. An example of IF interpolation with patient data is provided to illustrate its applicability in the actual clinical setting. Application of IF interpolation in the context of noninvasive reconstruction of epicardial potentials (the “inverse problem”) is also examined. © 1998 Biomedical Engineering Society. PAC98: 8710+e, 0260Ed
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 26 (1998), S. 994-1009 
    ISSN: 1573-9686
    Keywords: EP catheter mapping ; Simultaneous endocardial mapping ; Noncontact endocardial mapping ; Endocardial potential mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract In previous studies, we established methodology for reconstructing endocardial potentials, electrograms and isochrones from a non-contact intracavitary probe during a single beat. The probe was too large to be introduced percutaneously. Here we examine the possibility of similar mapping with a small multielectrode catheter that could be introduced percutaneously and does not expand inside the cavity. Cavity geometry and endocardial potentials were recorded in an isolated canine left ventricle. Simulated catheter probes were introduced into the cavity. Probe potentials were computed from the measured endocardial potentials and perturbed to include measurement noise, geometrical errors, and limited electrode density. Endocardial potentials were then reconstructed from the perturbed probe potentials and compared to the actual measured potentials. Of all probes simulated, a 3.0 mm (9F) catheter that assumes a curved geometry (e.g., a J shape) inside the cavity performed best (better than a larger 7.6 mm cylinder simulating an inflatable probe). Without bending, a straight cylindrical probe of the same size (9F, 3.0 mm) did not perform well. Sixty probe electrodes were needed for accurate reconstruction. The J-probe reconstruction was very robust in the presence of noise (10%) and of geometry errors (3 mm shift, 10° rotation). The results demonstrate the feasibility of accurate single-beat endocardial mapping using a 9F percutaneous multielectrode catheter that assumes a J shape in the cavity without the need for expansion (e.g., into a balloon or a “basket”). The robustness of the procedure to noise and geometrical errors suggests its applicability in the clinical EP laboratory and the possibility of determining probe position in vivo using current imaging modalities. © 1998 Biomedical Engineering Society. PAC98: 8759Wc
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 26 (1998), S. 597-607 
    ISSN: 1573-9686
    Keywords: Electrocardiography ; Cardiac mapping ; Activation ; Electric potential fields ; Excitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract In mapping the electrical activity of the heart, interpolation of electric potentials plays two important roles. First, it permits the estimation of potentials in regions that could not be sampled or where signal quality was poor, and second, it supports the construction of isopotential lines and surfaces for visualization. The difficulty in developing robust interpolation techniques for cardiac applications lies in the abrupt change in potential in the vicinity of the activation wave front. Despite the resulting nonlinearities in spatial potential distributions, simple linear interpolation methods are the current standard and the resulting errors due to aliasing can be large if electrode spacing does not lie on the order of 0.5–2 mm—the thickness of the activation wave front. We have developed a novel interpolation method that is based on two observations specific to the spread of excitation in the heart: (1) that propagation velocity changes smoothly within a region large enough to contain several measurement electrodes and (2) that electrogram morphology varies very little in the neighborhood of each sample point except for a time shift in the potential wave forms. The resulting interpolation scheme breaks the interpolation of one highly nonlinear variable—extracellular potential—into two separate interpolations of variables with much less drastic spatial variation—activation time and electrogram morphology. We have applied this method to potentials originally recorded at 1.5 mm spacing and then subsampled at a range of densities for testing of the interpolation. The results based both on reconstruction of isopotential contour maps and statistical comparison showed significant improvement of this novel approach over standard linear techniques. The applications of the new method include improved determination of electrophysiological parameters such as spatial gradients of potential and the path of cardiac activation and recovery, estimation of electrograms at desired locations, and visualization of electric potential distributions. © 1998 Biomedical Engineering Society. PAC98: 8790+y, 0260Ed, 8710+e
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...