Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Pin-hole free ferroelectric (Pb,La)(Zr1−xTix)O3 thin films with uniform composition have been fabricated using the metallo-organic precursor compounds, which were carefully home synthesized. The structural development, spectroscopic, and dielectric properties of these films have been systematically investigated using atomic force microscopy (AFM), x-ray diffraction, Fourier transform infrared spectroscopy, Raman scattering, and dielectric measurements. It has been found from our experimental results of PZT 40/60 thin films that the overlapping of (h00) and (00l) peaks of these films in x-ray diffraction patterns, mainly due to the small grain sizes in films, makes it very difficult to distinguish individual diffraction peaks and to identify the phases. However, Raman measurements undoubtedly reveal the Raman spectra of these films in the tetragonal phase field, demonstrating that Raman spectroscopy is an effective tool to identify structures, especially in the case of thin films having very small grains. AFM results show that the PZT perovskite structure in films may grow radially by rosettes and that microcracks appear in the three-dimensional AFM pictures at grain boundaries, which may be the cause for easy dielectric breakdown.A striking feature of the AFM observation is that three polycrystalline perovskite regions intersect symmetrically at a point with 120° to each other, and a rosette growth model for the perovskite structure in PZT films is thus proposed to explain this new phenomenon. The excellent ferroelectric properties of these films, such as the high fatigue resistance and low leakage current, are attributed to the high quality of the metallo-organic solutions and to reduce the amount of oxygen vacancies in the films by optimizing the annealing conditions and by doping a suitable amount of La ions to minimize the charge blocking of oxygen vacancy at the interface by Pt electrode. It seems that the rhombohedral PZT films with softer hysteresis loops are suitable for nonvolatile random access memory application. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 1956-1961 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this article the magneto-optics of magneto-optical (M-O) layered structures have been studied theoretically and experimentally. For the air/M-O/air configuration, an analytic expression between the apparent complex Faraday rotation and the eigenvalue φ˜F=e1φ˜F′ can be obtained, when the M-O layers are semitransparent and weakly magnetic. The interference factor e1 is a function of the optical constants and the M-O layer thickness d, and the light wavelength. In these structures, the apparent Faraday rotation consists of two parts. One oscillates as a function of the M-O layer thickness and the other is proportional to the layer thickness. The oscillation period and the amplitude are determined by the optical constants of the M-O layers. For the air/M-O/reflector configuration, the Kerr rotation φ˜k oscillates as a function of the M-O layer thickness and approaches a constant as the thickness d→∞. If the M-O layers are semitransparent and weakly magnetic, the apparent Kerr rotation can be expressed as φ˜k=e2φ˜F′. For ultrathin metallic magnetic bilayered films the Kerr rotation is proportional to the M-O layer thickness and the enhancement factor is a function of the optical constants of the M-O layer and NM reflector. The magneto-optics of a Co spinel ferrite film, Co/Cu, Fe-Ni/Cu, and Co/Si structures have been studied experimentally. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Excimer laser ablation has been used to deposit epitaxial films of β-SiC on single-crystal Si wafers, in a vacuum, at substrate temperatures between 1050 and 1250 °C. Such films can be grown by ablating ceramic SiC, carbon, or alternating silicon and carbon targets at a range of growth rates. X-ray θ-2θ diffraction shows the presence of strong, sharp reflections from crystal planes parallel to the substrate, 200 and 400 for [100] substrates and 111 and 222 for [111] oriented substrates. Wrong reflections, such as 111 for [100] substrates, are extremely weak or absent, indicating alignment with the substrates. The characterization of these films by a number of techniques is discussed. In all cases the film-substrate interface shows a characteristic microstructure of cavities in the Si substrate, similar to that observed for the carbonization layer initially formed as a precursor for chemical-vapor deposition of SiC films on Si. This implies that the initial film growth, for all cases, involves chemical reaction of the Si substrate with the carbon in the plume as well as transport through the growing film. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 5452-5454 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Static thermomagnetic recording on MnBiAl films at 633 nm is reported. The intrinsic Kerr rotation of the sample investigated is 1.8° at 633 nm. A 14 mW pulsed laser was used to write stable domains with diameter of 1.2 μm under zero external applied magnetic field, and a 12 mW pulsed laser was utilized to erase the recorded domains using an external field 600 Oe. The direct observation of the homogeneously recorded domain arrays of 16×22 points on an area of approximately 0.01 mm2 shows that they possess a very good circular configuration, distinct margin, and a very high contrast between "0'', "1'' states due to large Kerr rotation θk and coercivity Hc. The number of write/erase cycles on MnBiAl is over 106 times, which is a significant improvement over the 103 times possible with MnBi. Measurements demonstrate that MnBiAl film is a promising magneto-optical recording medium. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 2707-2711 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Diamond samples with varying defect densities have been synthesized by chemical vapor deposition, and their field emission characteristics have been investigated. Vacuum electron field emission measurements indicate that the threshold electric field required to generate sufficient emission current densities for flat panel display applications ((approximately-greater-than)10 mA/cm2) can be significantly reduced when the diamond is grown so as to contain a substantial number of structural defects. The defective diamond has a Raman spectrum with a broadened peak at 1332 cm−1 with a full width at half maximum (FWHM) of 7–11 cm−1. We establish a strong correlation between the field required for emission and the FWHM of the diamond peak. The threshold fields are typically less than 50 V/μm and can reach as low as 30 V/μm for diamond with a FWHM greater than 8.5 cm−1. It is believed that the defects create additional energy bands within the band gap of diamond and thus contribute electrons for emission at low electric fields. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 4042-4044 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Soft magnetic properties of new Fe-Cr-N and Fe-Cr-Ta-N alloy films have been investigated. Thin films with compositions in the range of Fe-2∼8% Cr-0∼1% Ta-5∼15% N (in at. %) were prepared by reactive sputtering in a nitrogen-containing atmosphere. The films, most likely nanocrystalline, exhibit excellent soft magnetic properties in the as-deposited condition without any post heat treatment, e.g., Hc∼1–2 Oe (79.4–158.8 A/m) and 4πMs∼15–20 kG. The easy-axis M-H loop is square. The hard-axis loop is linear and closed, with the anisotropy field Ha=20–60 Oe (1.59–4.77 kA/m). The combination of high 4πMs and relatively high Ha in these films is conducive to the suppression of the undesirable ferromagnetic resonance (FMR) interference up to the GHz frequency range. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 70 (1997), S. 3161-3163 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High frequency magnetic properties of a new, soft magnetic Fe–Cr–Ta–N alloy film have been investigated. Thin films with a composition of Fe-4.6% Cr-0.2% Ta-7.4% N (in atomic %) were prepared by reactive sputtering in a nitrogen-containing atmosphere. The films, most likely nanocrystalline, exhibit excellent soft magnetic properties in the as-deposited condition without any post heat treatment, e.g., Hc as low as 1.2 Oe (95.3 A/m) and 4πMs∼20 kG. The easy-axis M–H loop is square. The hard-axis loop is linear and closed, with the anisotropy field Ha=20–100 Oe (1.59–7.95 kA/m). By virtue of their high 4πMs and relatively high Ha, these soft magnetic films exhibit high permeability and low loss in the GHz frequency range with the undesirable ferromagnetic resonance interference suppressed to beyond 2 GHz. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 67 (1995), S. 1157-1159 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Diamond films and islands grown by chemical vapor deposition were implanted with boron, sodium, and carbon ions at doses of 1014–1015/cm2. This structural modification at the subsurface resulted in a significant reduction of the electric field required for electron emission. The threshold field for producing a current density of 10 mA/cm2 can be as low as 42 V/μm for the as-implanted diamond compared to 164 V/μm for the high quality p-type diamond. When the ion-implanted samples were annealed at high temperatures in order to anneal out the implantation-induced defects, the low-field electron emission capability of diamond disappeared. These results further confirm our earlier findings about the role of defects in the electron emission from undoped or p-type doped diamond and indicate that the improved emission characteristics of as-implanted diamond is due to the defects created by the ion implantation process. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 5134-5139 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ferroelectric (Ba0.67Sr0.33)Ti1.02O3 thin films have been prepared by the sol-gel technology and characterized using thermogravimetric analysis, differential thermal analysis, x-ray diffraction, dielectric characterizations, and gas sensing measurements. The (Ba0.67Sr0.33)Ti1.02O3 thin film capacitive devices are made on Si substrate to detect hydrogen gas and to study hydrogen induced interfacial polarization potential. Experimental results show that the Schottky I–V behavior appears in these Pd/amorphous (Ba,Sr)TiO3 thin film/metal capacitive devices, both in air and in diluted hydrogen gas environment, and that the enhanced interfacial dipole potential as large as 4.5 V at 1042 ppm hydrogen gas in air has been observed. Compared with the available data in the literature, the obtained value of hydrogen induced interfacial polarization potential in our experiment is about seven times larger than the best one reported under similar testing conditions. It has been clearly shown that the hydrogen induced interfacial polarization potential is closely correlated with the microstructure of ferroelectric thin films and the enhancement of this interfacial polarization potential is mainly attributed to the high dielectric constant of amorphous ferroelectric thin films. A model is also proposed to explain this interesting phenomenon. In this model, hydrogen H2 molecules are dissociated at the top surface of the catalytic Pd layer and ionized under the positive bias. The H+ ions then diffuse through this Pd layer, accumulate at the interface between the Pd layer and the amorphous ferroelectric passivation film. Dipoles are thus formed so that the polarization potential is built up at the interface. Moreover, the high dielectric constant of ferroelectric films enhances dipole polarization, thus greatly improves the H2 gas induced polarization potential. Though in a preliminary stage, our experimental results offer great promise in fabricating large-scale, Si based ferroelectric thin film gas sensors and related electronic devices. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 3923-3925 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A series of bcc-Co(001)/Ge/Co trilayers was grown on a GaAs(001) substrate by the molecular beam epitaxy technique. The optical and magneto-optical properties of the samples were studied. An oscillatory variation of the magneto-optical Kerr effect (MOKE) with the thickness of the Ge spacers was observed. We conclude that the effective optical constants as well as the real and imaginary off-diagonal element of the dielectric tensor should be considered in explanation of the MOKE activities since both have a large influence on the MOKE oscillations. Moreover, the coercivity and magnetization also oscillate with the Ge layer thickness. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...