Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 13 (1991), S. 309-319 
    ISSN: 0271-2091
    Keywords: Viscous-inviscid interaction ; Shock wave-boundary layer interaction ; Boundary layers ; Finite element method for flow problems ; Zonal methods ; Choked viscous flows ; Stream function-vorticity formulation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A method is outlined for solving two-dimensional transonic viscous flow problems, in which the velocity vector is split into the gradient of a potential and a rotational component. The approach takes advantage of the fact that for high-Reynolds-number flows the viscous terms of the Navier-Stokes equations are important only in a thin shear layer and therefore solution of the full equations may not be needed everywhere. Most of the flow can be considered inviscid and, neglecting the entropy and vorticity effects, a potential model is a good approximation in the flow core. The rotational part of the flow can then be calculated by solution of the potential, streamfunction and vorticity transport equations. Implementation of the no-slip and no-penetration boundary conditions at the walls provides a simple mechanism for the interaction between the viscous and inviscid solutions and no extra coupling procedures are needed. Results are presented for turbulent transonic internal choked flows.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 10 (1990), S. 461-475 
    ISSN: 0271-2091
    Keywords: Finite elements ; Navier-Stokes ; Velocity-vorticity ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A velocity-vorticity formulation of the Navier-Stokes equations is presented as an alternative to the primitive variables approach. The velocity components and the vorticity are solved for in a fully coupled manner using a Newton method. No artificial viscosity is required in this formulation. The pressure is updated by a method allowing natural imposition of boundary conditions. Incompressible and subsonic results are presented for two-dimensional laminar internal flows up to high Reynolds numbers.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 661-675 
    ISSN: 0271-2091
    Keywords: Finite elements ; Navier-Stokes ; Velocity-vorticity ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A velocity-vorticity formulation of the Navier-Stokes equations is presented as an alternative to the primitive variables approach. The velocity components and the vorticity are solved for in a fully coupled manner using a Newton method. No artificial viscosity is required in this formulation. The pressure is updated by a method allowing natural imposition of boundary conditions. Incompressible and subsonic results are presented for two-dimensional laminar internal flows up to high Reynolds numbers.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 18 (1994), S. 1083-1105 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Solution methods are presented for the large systems of linear equations resulting from the implicit, coupled solution of the Navier-Stokes equations in three dimensions. Two classes of methods for such solution have been studied: direct and iterative methods.For direct methods, sparse matrix algorithms have been investigated and a Gauss elimination, optimized for vector-parallel processing, has been developed. Sparse matrix results indicate that reordering algorithms deteriorate for rectangular, i.e. M × M × N, grids in three dimensions as N gets larger than M. A new local nested dissection reordering scheme that does not suffer from these difficulties, at least in two dimensions, is presented. The vector-parallel Gauss elimination is very efficient for processing on today's supercomputers, achieving execution rates exceeding 2.3 Gflops the Cray YMP-8 and 9.2 Gflops on the NEC on SX3.For iterative methods, two approaches are developed. First, conjugate-gradient-like methods are studied and good results are achieved with a preconditioned conjugate gradient squared algorithm. Convergence of such a method being sensitive to the preconditioning, a hybrid viscosity method is adopted whereby the preconditioner has an artificial viscosity that is gradually lowered, but frozen at a level higher than the dissipation introduced in the physical equations. The second approach is a domain decomposition one in which overlapping domain and side-by-side methods are tested. For the latter, a Lagrange multiplier technique achieves reasonable rates of convergence.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 13 (1991), S. 135-144 
    ISSN: 0271-2091
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Finite element solution methods for the incompressible Navier-Stokes equations in primitive variables form are presented. To provide the necessary coupling and enhance stability, a dissipation in the form of a pressure Laplacian is introduced into the continuity equation. The recasting of the problem in terms of pressure and an auxiliary velocity demonstrates how the error introduced by the pressure dissipation can be totally eliminated while retaining its stabilizing properties. The method can also be formally interpreted as a Helmholtz decomposition of the velocity vector.The governing equations are discretized by a Galerkin weighted residual method and, because of the modification to the continuity equation, equal interpolations for all the unknowns are permitted. Newton linearization is used and at each iteration the linear algebraic system is solved by a direct solver. Convergence of the algorithm is shown to be very rapid. Results are presented for two-dimensional flows in various geometries.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Methods for Partial Differential Equations 7 (1991), S. 193-207 
    ISSN: 0749-159X
    Keywords: Mathematics and Statistics ; Numerical Methods
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: Finite element solutions of the Euler and Navier-Stokes equations are presented, using a simple dissipation model. The discretization is based on the weak-Galerkin weighted residual method and equal interpolation functions for all the unknowns are permitted. The nonlinearity is iterated upon using a Newton method and at each iteration the linear algebraic system is solved by a direct solver with all unknowns fully coupled. Results are presented for two-dimensional transonic inviscid flows and two- and three-dimensional incompressible viscous flows. Convergence of the algorithm is shown to be quadratic, reaching machine accuracy in very few iterations. The inviscid results demonstrate the existence of nonunique numerical solutions to the steady Euler equations.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...