Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Material
Years
Year
  • 1
    ISSN: 1432-0819
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The volcanic products from Lipari define an evolutionary trend with a high gradient of K-enrichment, similar to the calc-alkaline to potassic volcanism of other islands in the Aeolian arc. Stratigraphic reconstruction of the island based on field and geochronological data indicate that the volcanic activity can be subdivided in two stages. The first stage, from 223 to 42 ka, consists of six eruptive cycles and is characterized by basalts and basalt-andesites showing progressive increase in both SiO2 and K2O contents with time. The second stage consists of four cycles erupted since 42 ka and is marked by an apparent rejuvenation of the geochemical system with the appearance of the first rhyolitic products. Fractional crystallization, assimilation and mixing models suggest that the geochemistry of Lipari volcanism evolved with time by a complex interplay between two mantle-derived components, one sub-alkaline and the other alkaline, in addition to crustal melts and/or crustally-derived materials. A petrogenetic model in which fractional crystallization was subordinate to mixing best fits the geochemical data and petrographic observations of macro- and microscopic features. Melts from the crustal and mantle end-members are almost always present in the system but the relative proportions appear to vary with time. The sub-alkaline mantle component (source of Tyrrhenian tholeiites) is an important contributor to the early evolution of the volcanism in Lipari; input from the alkaline mantle component (source of the Roman Comagmatic Province) increases with time, and the crustal component becomes dominant in the later activity. The preferred petrogenetic model for the temporal evolution of the volcanic system in Lipari involves melting initially caused by an increase in the thermal input related to the opening of the Tyrrhenian Sea and/or to subduction processes. The quick rise of the isotherms and almost contemporaneous melting of source materials with different compositions favored complex mixing during ascent of the melts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 112 (1992), S. 450-462 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Volcanic rocks on the island of Lipari show the entire range of Sr, Nd, Pb isotopic compositions displayed by other islands in the Aeolian archipelago. The rapid isotopic evolution of subaerial volcanic rocks on Lipari towards crustal values together with the appropriate isotopic composition of the neighbouring Calabrian crust (Serre) indicate that many geochemical characteristics observed in the lavas can be attributed to contamination and mixing with crustal materials and melts. Interpretation of the data is complicated by the fact that underplating onto the crust-mantle boundary and the specific lithologies present in the crustal section differ underneath each individual sector of the island. In the central and northern parts of the island, metapelitic rocks were incorporated to provide the more radiogenic Sr isotopic compositions of some lavas. The products from M. Guardia in the southern part of Lipari, where activity is restricted to the last 30–40 ka, bear geochemical similarities to the island of Vulcano, where it is proposed that considerable remobilization of the crust took place in the presence of mafic mantle-derived melts. On Lipari the petrogenetic processes of magma mixing and assimilation dominate over fractional crystallization, and the observed increase of K2O over Na2O can be correlated with contributions from metapelitic crustal lithologies. It is suggested that the variability in isotopic composition and the budget of alkalis (Na2O versus K2O) in the lavas can be explained by invoking a heat source from an intruding asthenospheric MORB-type mantle into a cooler lithospheric crust/mantle during the opening of the Tyrrhenian basin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...