Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (5)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 63 (1991), S. 99-118 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 65 (1993), S. 311-333 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 1864-1873 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The resistance and structural stabilities of the epitaxial CoSi2 films, grown on (001) Si substrates using sequentially deposited Ti-Co bimetallic layer source materials, have been investigated by further anneals under extended conditions. In contrast to reported polycrystalline silicide film cases, the epitaxial CoSi2 films are very stable under the additional rapid thermal annealing treatment at 1100 °C for times from 10 to 60 s. This means that such CoSi2 films are able to stand the further heat treatment required in the ultralarge-scale integration regime of Si integrated circuit fabrication. The quality of the further annealed films has been actually improved: The film resistivity has decreased to reach a value as low as 10 μΩ cm, and the film structure has become more perfect, e.g., the densities of antiphase domains and film-Si interface facets have been decreased. For technological applications, it is necessary to remove the Ti-Co-Si alloy layer formed concomitantly on top of the as-grown CoSi2 film. This has been accomplished by chemical etching using the standard buffered oxide etch solution. In the present experiment, as-grown epitaxial CoSi2 films with and without the Ti-Co-Si alloy top layers have been both included and the same film resistance and structural stabilities have been observed. Thus, the excellent resistance and structural thermal stabilities of the present CoSi2 films result from the single-crystal nature of the films and not the effect of the top Ti-Co-Si capping layer. Mechanisms responsible for the excellent quality of the epitaxial CoSi2 films, as well as for the unacceptable quality of the polycrystalline silicide films, have been discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 7579-7587 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using coevaporated Ti-Co alloy and sequentially evaporated Ti-Co bimetallic layer source materials, CoSi2 films have been grown on (001) Si. The film resistivity and resistance thermal stability are excellent. The CoSi2 are epitaxial single-crystal films containing antiphase domains in the Ti-Co bimetallic layer cases and are polycrystalline films containing a substantial portion of epitaxial grains in the Ti-Co alloy cases. The epitaxial or substantially epitaxial nature of these CoSi2 films is the reason for the excellence in the film resistivity and resistance thermal stability. We believe that the epitaxial nature of the CoSi2 films results from two roles played by Ti. In the first, Ti served as a getterer for removing the native oxide layer on the Si wafer surfaces, which causes the nucleation of CoSi2 grains with random orientations. In the second, Ti silicides formed in the early stage of the annealing process served as Co diffusion barriers preventing Co2Si and CoSi formation, which would also lead to the formation of randomly oriented CoSi2 grains. Models of the interfacial structure of the epitaxial CoSi2 film and Si substrate have been constructed for [001] and [111] orientations. These models revealed that antiphase boundaries serve the role of relieving the lattice mismatch between the epitaxial CoSi2 film and Si substrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 61 (1992), S. 2920-2922 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The thermal stability of ∼50 nm CoSi2 and TiSi2 thin films after BF2+ implantation was investigated. The electrical characteristics of silicide films were evaluated after high temperature annealing as a function of implanted BF2+ energy. It was observed that implantation with a projected range near the silicide/silicon interface produced the most stable films. The silicide/silicon interface morphology was investigated using scanning tunneling microscopy, where with appropriate BF2 implantation conditions, smoother interfaces were seen after high temperature annealing. The stabilizing effect is attributed to fluorine segregation into the silicide grain boundaries and at the silicide/silicon interface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...