Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 73.40—c
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Models for the growth and shrinkage of an interfacial oxide layer and for the stability of the interfacial oxide layer are formulated. Predictions of these models are compared to results obtained by high-resolution transmission electron microscopy. Wafers containing different concentrations of oxygen interstitials are bonded. Depending on the starting concentration of oxygen interstitials in the wafers, the interfacial oxide layer grows or shrinks during long-time annealing at high temperatures. For much shorter annealing times, local disintegration of the oxide layer may occur, which is less severely influenced by the concentration of oxygen interstitials. Rather, it depends on the thickness of the interfacial oxide layer. The influence of rotational misorientation is examined by rotating wafers around their common axes perpendicular to a wafer plane and subsequent bonding. Above a critical angle of about 1–3°, a continuous oxide layer is formed, whereas below this critical angle, sufficiently thin oxide layers disintegrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 56 (1993), S. 249-258 
    ISSN: 1432-0630
    Keywords: 61.70.Bv ; 61.70.Tm ; 66.30.Jt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V Ga 3− , has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V Ga 3− concentration, $$C_{V_{_{Ga} }^{3 - } }^{eq} (n)$$ , has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the $$C_{V_{_{Ga} }^{3 - } }^{eq} (n)$$ value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This $$C_{V_{_{Ga} }^{3 - } }^{eq} (n)$$ property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V Ga 3− has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 61 (1995), S. 397-405 
    ISSN: 1432-0630
    Keywords: PACS: 61.70; 61.70; 66.30
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract.  Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, an amphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancy V 2- Ga and the triply positively charged defect complex (ASGa+V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site and V As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect system V 2- Ga/(AsGa+V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately the E v +0.6 eV level position, which requires that the net free energy of the V Ga/(AsGa+V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about the E v +1.2 eV level position instead of the needed E v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 90 (2001), S. 5388-5394 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In silicon solar cell fabrication, impurity gettering from Si by an aluminum layer and indiffusion of Al for creating the back surface field (BSF) are inherently carried out in the same process. We have modeled these two processes and analyzed their impact on solar cell efficiency. The output of gettering and Al indiffusion modeling is used as an input for calculation of solar cell efficiency. The cell efficiency gain is obtained as a function of the processes duration. To check the relative contributions of gettering and BSF in improving the cell efficiency, their effects are evaluated together as well as separately. It is found that, for solar cells fabricated from low quality, multicrystalline Si, the efficiency gain is solely due to gettering. In solar cells made of high quality Si, the efficiency gain is primarily due to gettering, but the BSF may play a significant role if the cell thickness is less than about 200 μm. The two effects are found to be synergetic. The model provides a means for optimization of the temperature regime for both processes, as well as for maximization of solar cell efficiency. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 55 (1989), S. 2108-2110 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the effect of nickel and copper on defect formation in silicon employing the rapid thermal processing (RTP) scheme. Treatment by RTP induces haze in the silicon wafer front side when its back side is contaminated by either nickel or copper. Transmission electron microscopy studies showed that the haze consisted of metal silicide precipitates, which negates a previous suggestion that "oxidation-induced stacking faults'' are the main defect forming the haze. The morphology and nature of these precipitates have been analyzed. The nickel silicide precipitates were found to be NiSi2 and the copper silicide precipitates are most likely CuSi (zinc blende structure). Both kinds of precipitates exhibited an epitaxial relationship with the silicon substrate and adopted the shape of an inverted pyramid or section of a pyramid. The present CuSi precipitate morphology differs totally from that obtained using furnace annealing, and is attributed to the availability of free-silicon surface as the main silicon self-interstitial sink. Implications for low-temperature ultralarge scale integration processing are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 150-157 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A model for the effect of Zn indiffusion on enhancing the GaAs/AlAs superlattice (SL) disordering process, which combines recently proposed models for Ga self-diffusion and Zn diffusion in GaAs, is presented. Four coupled partial differential equations describing the process were solved numerically. Satisfactory agreement between the simulated results and experimental data available in the literature is obtained. At a given temperature, the used values for the diffusion coefficient and the thermal equilibrium concentration of the responsible point defect species, the doubly positively charged Ga self-interstitials IGa2+, are a consistent splitting of the known Ga self-diffusion coefficient dominated by IGa2+. Quantitatively, the SL disordering enhancement is mainly due to the Fermi-level effect while an IGa2+ supersaturation also makes a small contribution. Because of p-doping by Zn acceptor atoms, the IGa2+ concentration is increased tremendously via the Fermi-level effect. An IGa2+ supersaturation also develops because the IGa2+ generation rate is higher than its removal rate. The enhanced SL disordering process mainly proceeds under the Ga-rich SL composition conditions. The Zn-indiffusion-enhanced Al-Ga interdiffusion coefficient shows an apparent dependence on the Zns− concentration differing slightly from a quadratic relationship.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 2192-2196 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Formation of SiO2 precipitates in Czochralski Si is associated with a volume expansion of more than 100%. The needed extra volume for precipitate growth to occur is primarily supplied by emission of Si self-interstitials (I) into the Si matrix, in balance with a compressive growth residual strain. During cooling after the anneal, an additional compressive cooling strain component also develops because of the different thermal expansion coefficients of SiO2 and Si. For precipitates grown to a sufficiently large size, the growth residual strain and/or the cooling strain can be further relieved by punching interstitial type prismatic dislocation loops into the Si matrix. Otherwise, only I emission can occur. Up to now, there have been no quantitatively determined strain values, which constitute in a given experiment a measure of the I emission efficiency on the one hand, and a basis for determining whether prismatic punching can also occur on the other. In this study, we have calculated the strain values and obtained a quantitative criterion for prismatic punching to occur. In the order of ∼10−3–10−2, the growth residual strain component values indicate that I emission has attained an efficiency of relieving the precipitate growth strain by ∼90%–99%. Available experimental data on the precipitate size dependence of prismatic dislocation loop punching have been satisfactorily fitted using the obtained strain values and the punching criterion, indicating that these calculated values are in acceptable accuracy ranges.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 1864-1873 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The resistance and structural stabilities of the epitaxial CoSi2 films, grown on (001) Si substrates using sequentially deposited Ti-Co bimetallic layer source materials, have been investigated by further anneals under extended conditions. In contrast to reported polycrystalline silicide film cases, the epitaxial CoSi2 films are very stable under the additional rapid thermal annealing treatment at 1100 °C for times from 10 to 60 s. This means that such CoSi2 films are able to stand the further heat treatment required in the ultralarge-scale integration regime of Si integrated circuit fabrication. The quality of the further annealed films has been actually improved: The film resistivity has decreased to reach a value as low as 10 μΩ cm, and the film structure has become more perfect, e.g., the densities of antiphase domains and film-Si interface facets have been decreased. For technological applications, it is necessary to remove the Ti-Co-Si alloy layer formed concomitantly on top of the as-grown CoSi2 film. This has been accomplished by chemical etching using the standard buffered oxide etch solution. In the present experiment, as-grown epitaxial CoSi2 films with and without the Ti-Co-Si alloy top layers have been both included and the same film resistance and structural stabilities have been observed. Thus, the excellent resistance and structural thermal stabilities of the present CoSi2 films result from the single-crystal nature of the films and not the effect of the top Ti-Co-Si capping layer. Mechanisms responsible for the excellent quality of the epitaxial CoSi2 films, as well as for the unacceptable quality of the polycrystalline silicide films, have been discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 55 (1989), S. 1194-1196 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Voids have been found in the near-surface region of GaAs/AlGaAs superlattices in a transmission electron microscopy study. The superlattices were Si- or Al-implanted and subsequently either furnace or rapid thermally annealed. Concurrent with the presence of voids is an inhibition of superlattice layer intermixing enhancement in the near-surface region. This inhibition does not occur in the deeper region of the samples where voids are not found. The voids can form via condensation of the Ga and As vacancies produced by the implantation process. We suggest that voids can depress dopant activation, suppress dopant diffusion, and inhibit the superlattice layer intermixing enhancement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 54 (1989), S. 849-851 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Diffusion of elements migrating via a substitutional-interstitial mechanism in III-V compounds may induce nonequilibrium concentrations of native point defects. It has generally been assumed in the literature that, in the presence of dislocations, the point defects approach their thermal equilibrium concentrations. In contrast, it will be shown here that in III-V compounds the most favorable concentration a perturbed mobile species in one sublattice can reach corresponds to that of establishing a local equilibrium relation with another mobile species in the other sublattice if long-range transport of the defects to crystal surfaces is absent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...