Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
Material
Years
Year
  • 1
    ISSN: 1434-6036
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have utilized the polarized neutron scattering technique for the determination of the nuclear temperature in copper from 20 mK down to 100 μK. Using a cooling facility where two adiabatic demagnetization stages work in series we have calibrated the flipping ratio of neutrons scattered from the (200) Bragg-peak against the nuclear polarization over the whole polarization range. The observed calibration curve deviates considerably from the curve expected for an extinction-free sample. The polarized neutron thermometer is discussed and applied in measurements of the spin-lattice relaxation in copper.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of low temperature physics 74 (1989), S. 435-473 
    ISSN: 1573-7357
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have constructed a two-stage nuclear demagnetization cryostat for neutron diffraction studies of nuclear magnetism in copper. The cryostat is combined with a two-axis neutron spectrometer which can use both polarized and unpolarized neutrons. By demagnetizing highly polarized copper nuclear spins, the nuclei could be cooled below the ordering temperatureT N≃60 nK, while keeping the lattice at a considerably higher temperature between 50 and 100 µK. The neutron beam increases the lattice temperature in the sample by a factor of two or more, thereby considerably shortening the time for measurements in the ordered state; both our calculations and the experiments yield 1 nW beam heating. Polarized neutron experiments show that the scattered intensities from the strong fcc reflections are severely reduced by extinction. This makes the sample not very suitable for further studies with polarized neutrons. By observing the (100) Bragg reflection, we have unambiguously proven antiferromagnetic ordering of the copper nuclear spins. Using a linear, position-sensitive detector, the time evolution of this peak was followed during the warm-up of the nuclear spin system. The peak intensity was found to depend strongly on the external magnetic field between zero and the critical fieldB c=0.25 mT, indicating the existence of at least two antiferromagnetic phases. The results are compared to previous measurements of the magnetic susceptibility. Theoretical calculations do not provide a full explanation for our experimental data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...