Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (10)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 469 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 469 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Bioprocess and biosystems engineering 4 (1989), S. 175-181 
    ISSN: 1432-0797
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A previous three phase fluidized sand bed reactor design was improved by adding a draft tube to improve fluidization and submerged effluent tubes for sand separation. The changes had little influence on the oxygen transfer coefficients(K L a), but greatly reduced the aeration rate required for sand suspension. The resulting 12.5 dm3 reactor was operated with 1 h liquid residence time, 10.2dm3/min aeration rate, and 1.7–2.3 kg sand (0.25–0.35 mm diameter) for the degradation of phenol as sole carbon source. The K La of 0.015 s−1 gave more than adequate oxygen transfer to support rates of 180g phenol/h · m3 and 216 g oxygen/h · m3. The biomass-sand ratios of 20–35 mg volatiles/g gave estimated biomass concentrations of 3–6 g volatiles/dm3. Offline kinetic measurements showed weak inhibition kinetics with constants ofK s=0.2 mg phenol/dm3, K o2=0.5 mg oxygen/dm3 and KinI= 122.5 mg phenol/dm3. Very small biofilm diffusion effects were observed. Dynamic experiments demonstrated rapid response of dissolved oxygen to phenol changes below the inhibition level. Experimentally simulated continuous stagewise operation required three stages, each with 1 h residence time, for complete degradation of 300 mg phenol/dm3 · h.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 32 (1988), S. 677-688 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A biofilm fluidized sand bed column reactor (14 L) has been operated in the three-phase mode on a soluble glucose-yeast hydrolysate substrate in which the biofilm-sand phase (1-2.5 L) was suspended by direct aeration of the bed. Within two weeks a tight biofilm was formed whose activity resulted in a 90% reduction, with loads of 10.7 kg TC/m3day. The residence time was 1 h. The biofilm remained intact during operation with high residence times (up to 23 h) over three weeks. Oxygen transfer coefficients varied with aeration rate and sand quantity between 0.02 and 0.04 s-1 during non growth conditions; they decreased with increasing amounts of clean sand and were higher and relatively independent of the sand fraction with biofilm-covered sand. Aeration rates used in the 14 L reactor were 23-40 L/min (2.4-4.1 cm/s) and were sufficient to suspend 78-92% f the biofilm-covered sand. Clean sand was 50-75% suspended. Oxygen uptake rates varied between 15.4 and 23.1 mol/m3 h.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 238-246 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A new method of continuous process analysis in fermentation using a mass spectrometer (MS) membrane probe is described. A number of samples from industrial fermentations were analyzed for the occurrence of volatiles detectable with a silicone membrane probe connected to a quadrupole MS. In all fermentations, characteristic spectra were observed which were found to change systematically during the batch process. Factor analysis was used to treat the data. The factor scores were compared with the actual product concentrations (antibiotics, toxins, etc.), which were measured using other analytical methods and were found to correlate with them. On-line analysis was also carried out on a fermentation with an MS and an Apple II microcomputer. Direct monitoring of products, which are not directly measurable with the membrane MS probe requires a new calibration each time conditions such as medium composition are changed.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 29 (1987), S. 493-501 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biological denitrification of drinking water was studied in a fluidized sand bed reactor using a mixed culture. Hydrogen gas was used as the reaction partner. The reaction kinetics were calculated with a double Monod saturation function. The Ks value for hydrogen was below 0.1% of saturation. No appreciable biofilm diffusion effects were detected. Reactor performance was a function of the culture's past history. Batch experiments always exhibited an accumulation of NO2-, but continuous experiments with a sufficiently long residence time always resulted in complete nitrogen removal. Rates of up to 23 mg N/L h, 25 mg N/g DW h, and 7.9 mg H2/L h were achieved. Residence times of 4.5 h would be required for complete denitrification of water containing 25 mg NO3--N/L or approximately 1 h for every 5 mg/L.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 482-489 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dissolved oxygen (DO) level has been shown to have a profound effect on the product distribution of a Bacillus subtilis culture, with acetoin being excreted with DO above 100 parts per billion (ppb) and butanediol below 100 ppb. The product concentration ratio changed rapidly in the 80-90 ppb range. Switching from one oxygen level to another caused one already accumulated product to be converted to the other in a reversible manner. Rates of change of 0.5-1 g/L h enabled detection within 10 min. Detection sensitivity is enhanced because the ratio of two concentrations can be measured. Remarkably sensitive to mixing rates, the culture responded to changes in stirring speed during experiments in which the dissolved oxygen was controlled at a constant level with a novel control system. Thus, the culture is capable of detecting dead zones in relatively well-mixed reactors and oxygen gradients in column and tubular reactors. High-viscosity effects can also be investigated since the culture grows well in xanthan gum solutions. Preliminary kinetic model development indicates that a useful model for simulating reactor mixing and transport effects can be developed to aid in the planning of experiments.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 31 (1988), S. 1-10 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The kinetics of anaerobic degradation of a molasses wastewater were measured under constant pH conditions in a laboratory scale packed bed reactor. In continuous and batch experiments the formation and degradation rates of the organic acids (butyric, propionic and acetic) have been followed. The influence of hydrogen gas on the acid degradation rates has been measured and, contrary to the literature and the thermo-dynamic calculations, no inhibition was detected, biofilm diffusional effects may be the reason. Two dynamic simulation models were tested, a heterogeneous model, which considered the biofilm diffusion-reaction phenomena and a quasihomogeneous model with the same kinetics. Except for hydrogen, the diffusion effects were found to be negligible. Otherwise both models gave essentially the same results and the time profiles of acids, hydrogen, carbon dioxide and methane agreed relatively well with dynamic startup experiments. Batch experiments showed the acid concentrations to be highly sensitive to the initial molasses concentration. This aspect was not included in the model but is being investigated further.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 32 (1988), S. 159-173 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Anaerobic degradation performance of a laboratory-scale packed-bed reactor (PBR) was compared with two fluidized-bed biofilm reactors (FBRs) on molasses and whey feeds. The reactors were operated under constant pH (7) and temperature (35°C) conditions and were well mixed with high recirculation rates. The measured variables were chemical oxygen demand (COD), individual organic acids, gas composition, and gas rates. As carrier, sand of 0.3-0.5 mm diameter was used in the FBR, and porous clay spheres of 6 mm diameter were used in the PBR. Startup of the PBR was achieved with 1-5 day residence times. Start-up of the FBR was only successful if liquid residence times were held low at 2-3 h. COD degradations of 86% with molasses (90% was biodegradable) were reached in both the FBR and PBR at 6 h residence time and loadings of 10 g COD/L day. At higher loadings the FBR gave the best performance; even at 40-45 g COD/L day, with 6 h residence times, 70% COD was degraded. The PBR could not be operated above 20 g COD/L day without clogging. A comparison of the reaction rates show that the PBR and FBR per formed similarly at low concentrations in the reactors up to 1 g COD/L, while above 3 g COD/L the rates were 17.4 g COD/L day for the PBR and 38.4 g COD/L day for the FBR. This difference is probably due to diffusion limitations and a less active biomass content of the PBR compared with the fluidized bed.The results of dynamic step change experiments, in which residence times and feed concentrations were changed hanged at constant loading, demonstrated the rapid response of the reactors. Thus, the response times for an increase in gas rate or an increase in organic acids due to an increase in feed concentration were less than 1 day and could be explained by substrate limitation. Other slower responses were observed in which the reactor culture adapted over periods of 5-10 days; these were apparently growth related. An increase in loading of over 100% always resulted in large increases inorganic acids, especially acetic and propionic, as well as large increases in the CO2 gas content. In general, the CO2 content of the gas was very low, due to the large amount of dissolved CO2 that exited with the liquid phase at low residence times. The performance of the FBR with whey was comparable to its performance with molasses, and switching of molasses to whey feed resulted in immediate good performance without adaptation.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biotechnology letters 7 (1985), S. 235-240 
    ISSN: 1573-6776
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Conclusions Except for the pronounced adaptation-hysteresis effect, the pulse experiments exhibited the expected trend: deviation from the steady feed reference curve was greatest at lowest dilution rates. Under conditions of lowest glucose level the effect of pulsing would be expected to cause the largest fluctuations in glucose, causing a certain fraction of the cells to ferment. Generally over the entire dilution rate range the biomass production was decreased and the ethanol was increased by pulsing the feed stream. There is, however, some evidence that pulse feeding can trigger quite unexpected results. Point (6) at D=0.3 h−1 in Fig. 1 exhibit a biomass productivity which was about 20% greater than the continuous feeding reference value (DX=3.6 kg m−3 h−1 as compared with 3.0 kg m−3 h−1). Such performance would be of significant commercial value, but the poor reproducibility due to adaptation, as seen here, certainly would preclude its application. The results obtained should also be applicable to fed batch operation at the corresponding glucose level. Further experiments including the variation of the glucose feeding period would be necessary to obtain a conclusive picture. The observed phenomena are likely to occur in other fermentations and could eventually explain some of the problems existing with scale up of fermentation processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...