Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (4)
  • 1
    ISSN: 1436-2449
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary Sodium styrene sulfonate was copolymerized with sodium chloroacrylate in water-isopropanol mixtures by radical initiation at 70°C. Analysis of the copolymers showed that due to dehalogenation reaction chloroacrylate units underwent various transformations with predominant formation of lactone structures. The copolymer composition was evaluated from NMR spectra. Monomer reactivity ratios were calculated using the integrated copolymerization equation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 25 (1987), S. 73-77 
    ISSN: 0887-6258
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 26 (1988), S. 2581-2588 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A new route to synthesize poly(p-phenylene sulfide) by nucleophilic substitution of 1,4-dibromobenzene with sodium sulfide in N-methylpyrrolidone is described. Kinetic evaluation shows the reaction to be of second order with two distinctive rate constant regimes. The first rate constant is higher and is operative until 50% conversion, whereas in the second regime (between 50 and 92% conversion) the rate is slower. The kinetics of this route is compared under identical conditions with the conventional synthesis based on 1,4-dichloro benzene and sodium sulfide.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 32 (1986), S. 4479-4490 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The polycondensation kinetics of aromatic nucleophilic substitution on 1,4-dichlorobenzene by sodium sulfide has been investigated at 195°C in N-methyl pyrrolidone. The reaction follows second-order kinetics. The rate is bimodal with an initial slow rate till 50% conversion followed by a faster rate between 50 and 97% conversion. The specific reaction rates have been evaluated as 3.97 × 10-3 L m-1 s-1 and 1.02 × 10-2 L m-1 s-1 for the initial and later part (50-97%) of the reaction. The development of the degree of polymerization with reaction time was followed by end-group analysis and intrinsic viscosity measurements of polymer samples collected at different conversions. The reaction differs from conventional polycondensation reactions in two aspects. Polymer formation occurs at low conversions, and a significant amount of uncreacted monomer is present even at very high conversions. Unlike other precipitation polymerization reactions, the polymer chain continues to grow even after precipitation.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...