Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (1)
  • 1980-1984  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 35 (1980), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The role of asparagine as precursor for the neurotransmitter aspartate was investigated in rat striatum in vitro.14C-asparagine incubated with striatal slices is converted to a great extent to 14C-aspartate which is released in a calcium-dependent manner by high KCl. Furthermore, a frontoparietal cortex ablation of two weeks produces a decrease of more than 70% in the striatal release of newly synthetized 14C-aspartate, whereas the striatal GABA release is unaffected. This suggests that asparagine is a possible pre-cursor in vitro for transmitter aspartate in the striatum. This reaction is dependent on intact corticostriatal fibres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The expression of the five somatostatin receptor subtypes, sst1–5 was compared on tissue containing glial tumours (glioblastomas or oligodendrogliomas), medulloblastomas, and on normal human cortex. By semiquantitative reverse transcription coupled to polymerase chain reaction, the receptor expression profiles were high in cortex and in tissue containing oligodendrogliomas. It was moderate in medulloblastomas. Tissue containing glioblastomas displayed lower expression of somatostatin receptor subtypes, sst1 and sst3 being mostly expressed. By 125I-Tyr0DTrp8 somatostatin-14 or 125I-Leu8DTrp22 Tyr25 somatostatin-28 autoradiography combined with synaptophysin immunohistochemistry, it was possible to differentiate between isolated tumoral cell component infiltrating the cerebral parenchyma (cortex or white matter) and tumoral tissue (without residual parenchyma) in glioblastomas or oligodendrogliomas. Glial tumoral tissue per se presented few somatostatin receptors. By contrast, medulloblastoma tumoral cells exhibited numerous octreotide sensitive somatostatin receptors. sst2 immunocytochemistry demonstrated immunostaining of neuronal cells and neuropile; sst2 and sst3 immunostaining was identified on glioblastoma proliferating vessels endothelial cells and on medulloblastomas tumoral cells. Faint sst2 immunostaining among glial tumoral cells was due to microglia, while glioma cells did not significantly stain. In summary, medulloblastoma tumoral cells express sst2/sst3 receptors at a high level while glioma cells do not. In gliomas, sst expression is restricted to endothelial cells on proliferating vessels (displaying both sst2 and sst3 receptors), including parenchyma and reactive microglia (only sst2). The differential expression of sst2/sst3 receptors on gliomas and medulloblastomas has implications for the therapy of these tumours.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 38 (1980), S. 437-441 
    ISSN: 1432-1106
    Keywords: Glutamate, aspartate, GABA ; In vitro release ; Cochlear nerve lesion ; Cochlear nucleus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Pool studies of glutamate and aspartate have suggested a transmitter role for these amino acids in cochlear nerve endings. As further evidence. the K+-evoked release of glutamate, aspartate and GABA was measured in cat cochlear nucleus slices in vitro and compared to the release following a cochlear nerve lesion. Using [3H]glutamine as precursor, the K+-evoked release of glutamate and γ-aminobutyric acid (GABA) was respectively 4.1 and 7.2 times the spontaneous release. Using [14C]glutamate as a marker, the K+-evoked release of glutamate and GABA was respectively 7.1 and 2.8 times the basal release. All K+-evoked releases were Ca++-dependent. Nine days after unilateral lesion of the cochlear nerve in the cat, the glutamate release decreased by about 75% on the lesioned side compared to the intact one, whereas the GABA release was not decreased. The labelled tissue glutamate, either synthesized from [3H]glutamine or labelled with [14C]glutamate, was also markedly decreased on the lesioned side. In comparison, the evoked release of aspartate, newly synthesized from [14C]glutamate, remained low and was only decreased by about 45% after cochlear nerve lesions. Comparing cat with rat cochlear nucleus, the glutamate release was similar in both animals, whereas the GABA release was much higher in the rat. It is concluded that glutamate and to a lesser extent aspartate are likely to be released from cochlear nerve terminals, supporting a transmitter role in these nerve fibres for both amino acids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...