Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0091-7419
    Keywords: lipoprotein ; trypsin ; dielectric measurements ; counterions ; α-dispersion ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The relative permittivity of aqueous solutions of human serum low density lipoprotein (LDL) and partially trypsin digested lipoprotein (T-LDL) has been determined for various concentrations at 20°C over the frequency range 0.15-100 MHz. Comparison of the dielectric dispersion curves for the digested lipoprotein with those for the native preparation revealed a larger low-frequency dielectric increment, which may be attributed to an increase in the number of counterions moving over the surface of the molecule. An explanation of this observation is an elevation of 70% in the net negative charge on the surface of the trypsin-treated particle as compared to its native counterpart.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 3 (1982), S. 17-24 
    ISSN: 0197-8462
    Keywords: dielectric methods ; permittivity ; water ; bound water ; water of hydration ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Three independent dielectric methods for the measurement of water of hydration (bound water) in a biological material are described and discussed comparatively. For well-defined aqueous solutions of biological molecules, hydration can be obtained from direct observations made on the δ dispersion or from measurement of the dielectric values of the β dispersion. For whole tissue, however, neither of these two methods is applicable, and to deduce the hydration, it is necessary to use the third technique in which the volume of the hydrated biological particle is obtained by measuring the effect of it on the known dielectric properties of pure water. The hydration can then be calculated by deducting the volume of the anhydrous particle from the experimentally determined volume of the hydrated particle. Owing to possible systemmatic errors the uncertainty in the absolute hydration value associated with this technique is rather larger than that obtained with the other two dielectric methods. For studying the differences between hydration in similar tissues, however, this objection disappears.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...