Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1573-5028
    Schlagwort(e): vicilin subunits ; Pisum sativum ; post-translational processing ; amino acid sequences
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Serological studies and comparison of N-terminal amino acid sequences with the amino acid sequence deduced from a cDNA clone have been used to establish the sequence relationships between the subunits of the pea seed storage protein, vicilin. Subunits smaller than Mr∼50 000 (i.e., Mr 34 000, 30 000, 25 000, 18 000, 14 000, 13 000 and 12 000) show extensive homology with molecules within Mr∼50 000 group. Both the sequencing and serological data confirm earlier evidence from studies on vicilin synthesisin vivo andin vitro which indicated that the vicilin subunits smaller than Mr∼50 000 arose by endoproteolytic cleavage of parent molecules within the Mr∼50 000 group. Cleavage in different Mr 50 000 parent molecules containing either one or both of two susceptible processing sites accounts for the formation of all the vicilin subunits smaller than Mr∼50 000, with the possible exception of the Mr34 000 polypeptide. The position of these sites in the putative parents were defined by reference to a complete amino acid sequence deduced from the sequence of DNA complementary to mRNA for one member of the Mr∼50 000 group.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-5028
    Schlagwort(e): abscisic acid ; α-amylase ; barley ; gene ; gibberellic acid ; mRNA
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Two cDNA clones were characterized which correspond to different RNA species whose level is increased by gibberellic acid (GA3) in barley (Hordeum vulgare L.) aleurone layers. On the criteria of amino terminal sequencing, amino acid composition and DNA sequencing it is likely that one of these clones (pHV19) corresponds to the mRNA for α-amylase (1,4-α-D-glucan glucanohydrolase, EC 3.2.1.1.), in particular for the B family of α-amylase isozymes (Jacobsen JV, Higgins TJV: Plant Physiol 70:1647–1653, 1982). Sequence analysis of PHV19 revealed a probable 23 amino acid signal peptide. Southern hybridization of this clone to barley DNA digested with restriction endonucleases indicated approximately eight gene-equivalents per haploid genome. The identity of the other clone (pHV14) is unknown, but from hybridization studies and sequence analysis it is apparently unrelated to the α-amylase clone. Both clones hybridize to RNAs that are similar in size (∼1500b), but which accumulate to different extents following GA3 treatment: α-amylase mRNA increases approximately 50-fold in abundance over control levels, whereas the RNA hybridizing to pHV14 increases approximately 10-fold. In the presence of abscisic acid (ABA) the response to GA3 is largely, but not entirely, abolished. These results suggest that GA3 and ABA regulate synthesis of α-amylase in barley aleurone layers primarily through the accumulation of α-amylase mRNA.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Plant molecular biology 1 (1982), S. 191-215 
    ISSN: 1573-5028
    Schlagwort(e): Gibberellic acid ; abscisic acid ; barley aleurone ; α-amylase ; protein synthesis ; mRNA
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Using in vivo pulse labeling, changes in the pattern of protein synthesis were detected in isolated barley aleurone layers treated with fibberellic acid (GA3). GA3 greatly altered the relative rates of synthesis of many polypeptides, increasing some, notably α-amylase, and decreasing others. α-Amylase synthesis increased until it was the major product (over 60%) of protein synthesis after 24h. The pulse-labeled pattern of secreted polypeptides was also changed by GA3. There was the expected increase in α-amylase together with a number of other polypeptides but there was reduced secretion of several polypeptides also. Cell-free translation of RNA isolated from control and hormone-treated tissues was used to measure changes in mRNA levels. GA3 caused many changes, particularly in the level of mRNA for α-amylase. In vitro synthesized α-amylase, identified by immunoaffinity chromatography, had an Mr of 46 000. This polypeptide was partially processed to a polypeptide with Mr 44 000 by the addition of dog pancreas membranes to the in vivo translation mixture. The level of mRNA for α-amylase began to increase 2–4 h after GA3 was added and reached a maximum level of about 20% of total mRNA after 16 h. Thus after 16 h, the synthesis of α-amylase as a proportion of total protein synthesis, continued to increase while the level of its mRNA as a proportion of total mRNA remained constant. These results indicate that protein synthesis was modified more extensively than we can account for by changes in mRNA. Abscisic acid (ABA) reversed all of the effects of GA3 on protein synthesis and mRNA levels. It also promoted synthesis of a small number of new polypeptides and increased the level of some mRNAs. GA3 reversed the accumulation of ABA-promoted mRNAs. Although, ABA strongly suppressed the increase in the level of translatable mRNA for α-amylase, there was an even stronger inhibition of enzyme synthesis and accumulation. We conclude that both GA3 and ABA regulate protein synthesis both positively and negatively in aleurone cells largely by regulating levels of mRNA and in the case of α-amylase, possibly also by changing the efficiency of translation of its mRNA.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...