Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Agrobacterium ; Convicilin ; Nicotiana (transgenic) ; Pisum (convicilin gene) ; Transgenic tobacco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Convicilin, a trimeric globulin of pea (Pisum sativum L.) seeds, is closely related to vicilin and composed of polypeptides of 68.2 kilodaltons. A partial copy DNA (cDNA) clone encoding convicilin was isolated, sequenced, and used to select a convicilin gene from a pea genomic library. A part of the genomic clone was sequenced to obtain the coding sequences missing in the cDNA clone and a further 1 kilobase 5′ to the start of transcription were also obtained. The entire sequence of convicilin was deduced from the combined genomic and cDNA sequences. The complete gene encoding convicilin was transferred to tobacco (Nicotiana tabacum L.) and the characteristics of its expression in the seeds of transgenic plants were studied. An unprocessed polypeptide, which was found only in the seeds of the transgenic plants, was identical in size to pea convicilin, and was recognized by vicilin antibodies. Convicilin, which does not undergo posttranslational cleavage in peas, was partially processed to polypeptides of a relative molecular mass (Mr) of approx. 50000 in transgenic tobacco seeds. There was a twofold variation in the level of convicilin accumulated by the mature seeds of a number of transgenic plants and this was well correlated with the number of gene copies incorporated in the different transformants. In the seeds of tobacco plants that contained a single copy of the transferred gene it was estimated that convicilin comprised up to 2% of the seed protein. Thus, using a combination of gene sequencing and expression in a heterologous host we believe we have characterized the gene corresponding to theCvc locus, whereas the gene described by D. Bown et al. (1988, Biochem J.,251, 717–726) probably encodes a minor convicilin-related protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Nicotiana ; Post-translational processing ; Transgenic tobacco ; Vicilin ; Vacuole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Vicilin, a 7S globulin of Pisum sativum L. seed, accumulates in protein-storage vacuoles (protein bodies) of cotyledonary storage-parenchyma cells. The synthesis and proteolytic processing of various genetically engineered proteins within the leaf and seed of a heterologous (tobacco, Nicotiana tabacum L.) host was examined. A modified vicilin gene, in which the DNA sequence corresponding to the signal peptide was removed, resulted in a polypeptide of 50 kDa in the tobacco leaf and seed; none of the normal proteolytic cleavage products characteristic of expression of an unmodified vicilin gene were obtained. Likewise, no vacuolar accumulation of this mutant vicilin occurred in leaf protoplasts, which is also supportive of the predicted cytosolic localization for this protein. In-frame deletions were made within the region of the vicilin gene encoding the mature protein, to eliminate the N-terminal 28 and 121 amino acids and the C-terminal 69 residues, while maintaining an intact signal peptide. All of these “mature” deletion-mutant proteins were accumulated to only low levels in the host, but exhibited the predicted molecular weight and underwent some normal proteolytic processing in the seed. Mutant vicilin proteins having deletions in either the N-terminus (ΔNT 121) or C-terminus (ΔCT 69) were not found in appreciable amounts within the vacuolar fraction of transgenic tobacco leaf protoplasts, perhaps due to protein degradation in this compartment. Compared with the intact vicilin, oligomer assembly of the C-terminal deletion-mutant protein was disrupted in leaf cells, which may have further affected protein stability. The deletions of mature vicilin protein led to a much less dramatic reduction in protein accumulation in transgenic tobacco seed. Further, the same mutant proteins expressed within transgenic tobacco seed exhibited correct and highly specific proteolytic processing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A number of plants outside the legume families are known to form nitrogen-fixing root nodules in symbiotic association with Rhizobium6 or actinomycetes7. Haemoglobin has been detected in nodules of several non-legume plants1'2 and characterized from Parasponia (Ulmaceae)8'9 and Casuarina ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell, tissue and organ culture 35 (1993), S. 43-48 
    ISSN: 1573-5044
    Keywords: histology ; plant regeneration ; shoot organogenesis ; somatic embryogenesis ; subclover ; tissue culture ; Trifolium subterraneum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Regeneration of subterranean clover (Trifolium subterraneum L.) was achieved by both shoot organogenesis and somatic embryogenesis. Shoots derived via organogenesis were initiated from the hypocotyls of mature imbibed seed. The hypocotyl, including the emerging radicle, was sliced longitudinally into two halves and cultured on shoot induction medium. After 30 days, adventitious shoots were formed from the hypocotyl region while the radicle showed no development. Shoots were then subcultured onto shoot multiplication medium and finally onto a root initiation medium. Histological studies revealed that shoots arose de novo and did not originate from pre-existing meristems. In the second regeneration protocol, shoot apical meristems from young seedlings were induced to form callus. Following four to six weeks culture in the dark, somatic embryos appeared spontaneously on the calli. A majority of embryos had a well-defined root pole, two cotyledonary lobes, and were capable of germination, albeit at a low frequency. Regenerated plants obtained from both protocols appeared phenotypically normal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5028
    Keywords: vicilin gene ; transgenic tobacco ; Agrobacterium tumefaciens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A 5.5 kb Eco RI fragment containing a vicilin gene was selected from a Pisum sativum genomic library, and the protein-coding region and adjacent 5′ and 3′ regions were sequenced. A DNA construction comprising this 5.5 kb fragment together with a gene for neomycin phosphotransferase II was stably introduced into tobacco using an Agrobacterium tumefaciens binary vector, and the fidelity of expression of the pea vicilin gene in its new host was studied. The seeds of eight transgenic tobacco plants showed a sixteen-fold range in the level of accumulated pea vicilin. The level of accumulation of vicilin protein and mRNA correlated with the number of integrated copies of the vicilin gene. Pea vicilin was confined to the seeds of transgenic tobacco. Using immunogold labelling, vicilin was detected in protein bodies of eight out of ten embryos (axes plus cotyledons) and, at a much lower level, in two out of eleven endosperms. Pea vicilin was synthesized early in tobacco seed development; some molecules were cleaved as is the case in pea seeds, yielding a major parental component of M r∼50000 together with a range of smaller polypeptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: amino acid sequence ; pea seed albumin ; internally repeated sequences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Pea albumin 2 (PA2:Mr≈26000) is a major component of the albumin fraction derived from aqueous salt extracts of pea seed. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and chromatography on DEAE-Sephacel resolve PA2 into two closely related components (PA2a and PA2b). A cDNA clone coding for one of these components has been sequenced and the deduced amino acid sequence compared with partial, chemically-determined sequences for cyanogen bromide peptides from both PA2 components. Complete amino acid sequences were obtained for the C-terminal peptides. The PA2 molecule of 230 amino acids contains four imperfect repeat sequences each of approximately 57 amino acids in length. The combined sequence data, together with a comparison of PA2-related polypeptides produced in vitro and in vivo, indicate that PA2 is synthesized without a signal sequence and does not undergo significant post-translational modification. Although both forms of PA2 contain Asn-X-Thr consensus sequences, neither form is glycosylated. Accumulation of PA2 contributes approximately 11% of the sulfur-amino acids in pea seeds (cysteine plus methionine equals 2.6 residues percent). Suppression of levels of PA2 polypeptides and their mRNAs in developing seeds of sulfur-deficient plants is less marked than that for legumin, in spite of the lower content of sulfur-amino acids in legumin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5028
    Keywords: Gibberellic acid ; abscisic acid ; barley aleurone ; α-amylase ; protein synthesis ; mRNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using in vivo pulse labeling, changes in the pattern of protein synthesis were detected in isolated barley aleurone layers treated with fibberellic acid (GA3). GA3 greatly altered the relative rates of synthesis of many polypeptides, increasing some, notably α-amylase, and decreasing others. α-Amylase synthesis increased until it was the major product (over 60%) of protein synthesis after 24h. The pulse-labeled pattern of secreted polypeptides was also changed by GA3. There was the expected increase in α-amylase together with a number of other polypeptides but there was reduced secretion of several polypeptides also. Cell-free translation of RNA isolated from control and hormone-treated tissues was used to measure changes in mRNA levels. GA3 caused many changes, particularly in the level of mRNA for α-amylase. In vitro synthesized α-amylase, identified by immunoaffinity chromatography, had an Mr of 46 000. This polypeptide was partially processed to a polypeptide with Mr 44 000 by the addition of dog pancreas membranes to the in vivo translation mixture. The level of mRNA for α-amylase began to increase 2–4 h after GA3 was added and reached a maximum level of about 20% of total mRNA after 16 h. Thus after 16 h, the synthesis of α-amylase as a proportion of total protein synthesis, continued to increase while the level of its mRNA as a proportion of total mRNA remained constant. These results indicate that protein synthesis was modified more extensively than we can account for by changes in mRNA. Abscisic acid (ABA) reversed all of the effects of GA3 on protein synthesis and mRNA levels. It also promoted synthesis of a small number of new polypeptides and increased the level of some mRNAs. GA3 reversed the accumulation of ABA-promoted mRNAs. Although, ABA strongly suppressed the increase in the level of translatable mRNA for α-amylase, there was an even stronger inhibition of enzyme synthesis and accumulation. We conclude that both GA3 and ABA regulate protein synthesis both positively and negatively in aleurone cells largely by regulating levels of mRNA and in the case of α-amylase, possibly also by changing the efficiency of translation of its mRNA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5028
    Keywords: vicilin subunits ; Pisum sativum ; post-translational processing ; amino acid sequences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Serological studies and comparison of N-terminal amino acid sequences with the amino acid sequence deduced from a cDNA clone have been used to establish the sequence relationships between the subunits of the pea seed storage protein, vicilin. Subunits smaller than Mr∼50 000 (i.e., Mr 34 000, 30 000, 25 000, 18 000, 14 000, 13 000 and 12 000) show extensive homology with molecules within Mr∼50 000 group. Both the sequencing and serological data confirm earlier evidence from studies on vicilin synthesisin vivo andin vitro which indicated that the vicilin subunits smaller than Mr∼50 000 arose by endoproteolytic cleavage of parent molecules within the Mr∼50 000 group. Cleavage in different Mr 50 000 parent molecules containing either one or both of two susceptible processing sites accounts for the formation of all the vicilin subunits smaller than Mr∼50 000, with the possible exception of the Mr34 000 polypeptide. The position of these sites in the putative parents were defined by reference to a complete amino acid sequence deduced from the sequence of DNA complementary to mRNA for one member of the Mr∼50 000 group.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5028
    Keywords: abscisic acid ; α-amylase ; barley ; gene ; gibberellic acid ; mRNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Two cDNA clones were characterized which correspond to different RNA species whose level is increased by gibberellic acid (GA3) in barley (Hordeum vulgare L.) aleurone layers. On the criteria of amino terminal sequencing, amino acid composition and DNA sequencing it is likely that one of these clones (pHV19) corresponds to the mRNA for α-amylase (1,4-α-D-glucan glucanohydrolase, EC 3.2.1.1.), in particular for the B family of α-amylase isozymes (Jacobsen JV, Higgins TJV: Plant Physiol 70:1647–1653, 1982). Sequence analysis of PHV19 revealed a probable 23 amino acid signal peptide. Southern hybridization of this clone to barley DNA digested with restriction endonucleases indicated approximately eight gene-equivalents per haploid genome. The identity of the other clone (pHV14) is unknown, but from hybridization studies and sequence analysis it is apparently unrelated to the α-amylase clone. Both clones hybridize to RNAs that are similar in size (∼1500b), but which accumulate to different extents following GA3 treatment: α-amylase mRNA increases approximately 50-fold in abundance over control levels, whereas the RNA hybridizing to pHV14 increases approximately 10-fold. In the presence of abscisic acid (ABA) the response to GA3 is largely, but not entirely, abolished. These results suggest that GA3 and ABA regulate synthesis of α-amylase in barley aleurone layers primarily through the accumulation of α-amylase mRNA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-9368
    Keywords: transgenic subterranean clover ; seed protein gene ; leaf expression ; sulphur-rich protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A gene encoding a sulphur-rich, sunflower seed albumin (23% cysteine plus methionine) was modified to contain the promoter for the 35S RNA of cauliflower mosaic virus, in order to obtain leaf expression in transgenic plants. In addition, a sequence encoding an endoplasmic reticulum-retention signal was added to the 3′ end of the coding region so as to stabilize the protein by diverting it away from the vacuole. The modified gene was introduced into subterranean clover (T. subterraneum L.) and its expression was detected by northern and western blots and by immunogold localization. The albumin was accumulated in the lumen of the endoplasmic reticulum, and, among six independent, transformed lines, it accumulated in the leaves of T0 transgenic plants at varying levels up to 0.3% of the total extractable protein. The level of accumulation of the sunflower albumin increased with increasing leaf age, and in the older leaves of the most highly expressing plants of the T1 generation it reached 1.3% of total extractable protein. Expression of the SSA gene was stable in the first and second generation progeny. These results indicate that there is potential for significantly improving the nutritional value of subterranean clover for ruminant animals such as sheep by expressing genes that code for sulphur-rich, rumen-stable proteins in leaves.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...