Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1980-1984  (2)
Material
Years
Year
  • 1
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract Striate cells showing linear spatial summation obey very general mathematical inequalities relating the size of their receptive fields to the corresponding spatial frequency and orientation tuning characteristics. The experimental data show that, in the preferred direction of stimulus motion, the spatial response profiles of cells in the simple family are well described by the mathematical form of Gabor elementary signals. The product of the uncertainties in signalling spatial position (δx) and spatial frequency (δf) has, therefore, a theoretical minimum value of δxδf=1/2. We examine the implications that these conclusions have for the relationship between the spatial response profiles of simple cells and the characteristics of their spatial frequency tuning curves. Examples of the spatial frequency tuning curves and their associated spatial response profiles are discussed and illustrated. The advantages for the operation of the visual system of different relationships between the spatial response profiles and the characteristics of the spatial frequency tuning curves are examined. Two examples are discussed in detail, one system having a constant receptive field size and the other a constant bandwidth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 39 (1980), S. 15-20 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract The spatial width of photoreceptor receptive fields affects the processing of signals in neural networks of the retina. This effect has been examined using the simple recurrent and non-recurrent network models, where lateral interaction strength was adjusted to approximate a prescribed receptive field profile. The results indicate that the optimal performance of the networks is obtained with photoreceptor receptive fields wider than the ganglion cell separation. It is thus concluded that while electrical coupling of photoreceptors in the retina reduces the intrinsic noise in the system, it also improves the sampling efficiency of the laterally coupled neural network of the retina.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...