Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2307
    Keywords: Proximal tubule ; Atrophy ; Cortical interstitium ; Human nephropathy ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A systematic ultrastructural analysis of proximal tubule atrophy and cortical interstitial changes was carried out in human chronic nephropathy. The investigation was based on human hydronephrotic kidneys, which had been surgically removed and subsequently perfusion-fixed for light and electron microscopy. Normal kidney tissue, which was derived from nephrectomy specimens with pathological changes confined to part of the kidney or to the renal pelvis, was used for control material. A slight degree of proximal tubule atrophy was characterized by reduction of mitochondria and basolateral membranes, enlargement of large endocytic vacuoles and increased numbers of lysosomes containing lamellar material. In moderate atrophy these changes were further accentuated, and in addition there was an increasing loss of microvilli and a reduction of endocytic invaginations and small endocytic vacuoles. In severe atrophy all types of organelles were sparse and the architecture of the tubule cells greatly simplified. A distinctive feature of atrophic tubules was the presence in the tubule cells of large bundles of actin-like filaments, which were often associated with outpouchings of basal cell parts and basement membrane. The reduction of mitochondria and basolateral cell membranes and the changes of endocytic vacuoles and lysosomes indicate that proximal tubule atrophy also in early stages may be associated with impairment of tubular transport processes. Comparisons with previous observations in various types of experimentally induced tubule cell degeneration and with the ultrastructure of regenerating proximal tubule cells provide some evidence that degenerative changes as well as imperfect regeneration of tubule cells may contribute to the alterations of ultrastructure in tubular atrophy. It is suggested that changes of the cortical interstitium may be of pathogenic importance for the progression of tubular atrophy by altering the spatial relationships between tubules and capillaries.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 164 (1982), S. 19-41 
    ISSN: 1432-0568
    Keywords: Human kidney ; Nephron development ; Distal segments ; Electron microscopy ; Morphometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The ultrastructural development of the human distal nephron was studied in fetuses 14–18 weeks of gestational age. The three-dimensional course of the nephrons was traced in serial semi-thin sections. Single semi-thin sections containing defined distal nephron segments were then reembedded, thin-sectioned and analyzed by electron microscopy. In stage I (renal vesicle) and stage II (S-shaped body) epithelial cells were essentially similar in ultrastructure. In stage III there were only minor variations in cell ultrastructure between distal nephron segments, but distinct differences were observed between proximal and distal tubule cells, the former being the most differentiated. The segments which are present in nephrons of adult kidneys could be identified in stage IV and some ultrastructural differences recognized between the cells. However, the amplification of the baso-lateral membrane, which is prominent in iontransporting mature distal segments, was almost absent and the baso-lateral membrane area per unit tubule length was similar in all distal segments. Intercalated cells were present towards the end of the distal convoluted and in the connecting tubule in stage IV but the ampulla of the collecting tubule was composed of cells with a uniform ultrastructure. Cell ultrastructure varied again to some extent in the collecting tubule. The present observations demonstrate that distal nephron segments in the human kidney are structurally undifferentiated in the early fetal development and suggest that they only to a limited extent are capable of modifying the composition of the tubular fluid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...