Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 20 (1973), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Myelin was purified from the peripheral nervous system (PNS) of several species. The protein composition of these preparations was examined by discontinuous polyacrylamide gel electrophoresis in buffers containing sodium lauryl sulphate. Proteins characteristic of all samples include, in order of increasing mobility: a series of high molecular weight proteins, the major peripheral nerve protein (P0), two uncharacterized proteins, and two basic proteins (P1 and P2). Quantitative results, obtained by densitometry of gels stained with Fast Green showed differences in protein distribution, both between species, and from different types of nerves obtained from the same animal. The relative amounts of P1 and P2 proteins were the most variable; e.g. myelin from guinea-pig sciatic nerve had little or no P2 protein, whereas 15 per cent of the myelin protein of beef posterior intradural root was Pz protein. P0, P1 and P2 proteins from rabbit sciatic nerve and P0 and P2 proteins from beef dorsal and ventral intradural roots were purified and their amino acid compositions were determined. Our results indicated that the P1 protein is very similar in size and amino acid composition to the basic protein of central nervous system myelin, whereas the P0 and P2 proteins are unique to the PNS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 19 (1972), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract— Myelin was isolated from the brains of mice at various ages by a procedure involving a final purification on a continuous CsCl gradient. Myelin protein accumulated throughout development, increasing from 0.25 mg of protein/brain at 8 days of postnatal age to 3.5 mg of protein/brain at 300 days, although the rate of accumulation was greatest at about 21 days of age. Quantitative studies of the protein composition of these samples were carried out, utilizing discontinuous polyacrylamide gel electrophoresis in buffers containing sodium lauryl sulphate. Mouse brain myelin, contained (in order of increasing molecular weight) two basic proteins, an uncharacterized doublet, proteolipid protein, and a group of high molecular weight proteins. There were marked changes in the quantitative distribution of these proteins with increasing postnatal age. The basic protein fraction of total myelin protein increased from about 18 per cent at 8 days to 30 per cent at 300 days of age. Proteolipid protein increased even more dramatically, from 7 to 27 per cent in the same time interval. These chemical studies were correlated with ultrastructural investigations, both of the developing myelin sheath in situ and the isolated myelin obtained from mice of various ages. A hypothesis, relating the observed changes in protein composition of myelin during development to its mode of formation, is developed. Another subcellular fraction, separated from myelin, by virtue of its greater density in a CsCl gradient, was also studied. It was a vesicular, membranous fraction present at a level of 0.35 mg of protein/brain at all ages and was related to myelin in terms of protein composition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 18 (1971), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A new technique, involving final purification on a continuous CsCl gradient, was utilized for the isolation of cerebral myelin from adult (4- to 6-month-old) quaking mice, littermate controls and young (10-day-old) normal mice. The yield of myelin from either adult quaking or normal young mice was 5-10 per cent of that from adult controls. After deli-pidation, myelin proteins were separated by polyacrylamide gel electrophoresis in buffers containing sodium dodecylsulphate. Two gel systems were utilized: (1) a high-resolution discontinuous electrophoresis system; and (2) a continuous system utilizing gels cross linked with ethylenediacrylate (EDA). The gels from the discontinuous system were stained with Fast Green and quantified by densitometry. The base lability of the EDA-linked gels permitted direct chemical determination of protein in specific bands.Myelin from brains of normal adult mice contained, as major components, one proteo-lipid and two basic proteins. There were also a number of high-molecular-weight proteins which represented a significant portion of the total. Myelin from quaking mice had qualitatively a similar distribution of proteins but the high-molecular-weight fraction comprised a much greater percentage of the total protein. The ratio of basic to proteolipid protein in preparations from quaking mice was considerably higher than that in the myelin from control mice. The distribution pattern of the myelin proteins from 10-day-old mice was quantitatively similar to that of quaking mice. Altogether the evidence supports the hypothesis that the quaking mutant provides a model of an immature nervous system with respect to myelination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...