Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (1)
Material
Years
Year
  • 1
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Short time incorporation of 32P was carried out with synchronised algae (young cells) depleted of phosphate. For the separation and determination of the acid-insoluble phosphate fractions of the cells an improved fractionation procedure was applied. In order to exclude competition by carbon dioxide all experiments were done in the absence of CO2. Compared with nitrogen, CO2-free air produces an increase in the labelling of phosphorylated compounds in the light. In strong white light, at high pH, air effects a remarkable increase of 32P in the acid-insoluble phosphate (P u), mainly in inorganic polyphosphates (P ul), whereas the total phosphate uptake remains almost unchanged. The increase in labelling of acid-insoluble phosphate is, therefore, accompanied by a substantial decrease in the labelling of acid-soluble compounds (P l). In weak white light or in far-red light, at low pH even in strong white or red light, an increase of phosphate uptake and an increased labelling of the acid-stable organic acid-soluble fraction (P os) is observed instead. The effect of oxygen increases somewhat with increasing light intensity up to light saturation, and it increases markedly with increasing oxygen concentration. An essential contribution by oxidative phosphorylation to this oxygen effect can be ruled out on account of its much higher sensitivity to oxygen. Pseudocyclic photophosphorylation is also not regarded as the main force because of its higher oxygen affinity. Occurrence of photorespiration has not been clearly established so far in related algae (Chlorella), and its use for phosphorylation is unknown. A better, although not complete explanation is given by comparing the oxygen effect with the well-known inhibition of photosynthesis by oxygen (Warburg effect), which leads to an increase in glycolate formation and a simultaneous decrease in the pool sizes of carbon reduction cycle intermediates, even in the absence of CO2. Since the photophosphorylation process, as well as the photosynthetic electron flow, seem unaffected by high oxygen concentrations whereas the formation of organic phosphate compounds is partially inhibited, excess ATP may be available for polyphosphate synthesis. This explanation would be consistent with the assumption that polyphosphate-ADP kinase mediates an equilibrium between ATP and polyphosphates, mainly at higher pH. At low pH and in other cases the excess ATP might be available for an increased phosphate uptake and for phosphorylation of endogenous carbohydrates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...