Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Key words Antigen presentation ; TAP peptide transporter gene ; HLA class II ; insulin-dependent diabetes mellitus ; linkage disequilibrium.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The TAP2 gene, located in the HLA class II region, encodes a subunit of a transporter involved in the endogenous antigen-processing pathway, and has been suggested to contribute to the genetic risk for insulin-dependent diabetes (IDDM). In order to determine whether the TAP2 locus modulates the risk conferred by HLA DQ loci, HLA DQA1-DQB1-TAP2 haplotypes were analysed in 48 IDDM probands, their first degree relatives, and in 62 normal control subjects. A decreased frequency of the TAP2B allele was confirmed in this IDDM cohort (12 vs 28 % in control subjects, p c 〈 0.05). Analysis of 73 informative meiotic events in IDDM and control families demonstrated a recombination fraction between HLA DQB1 and TAP2 loci of 0.041 (Log of the odds score = 16.5; p 〈 10–8) indicating strong linkage between these loci. Family haplotype analysis demonstrated linkage disequilibrium between TAP2 and HLA DQA1-DQB1, and showed that the reduced frequency of TAP2B was associated with its absence on the IDDM susceptible DQA1*0301-DQB1*0302 haplotype, its low frequency on DQA1*0501-DQB1*0201, and the association of TAP2B with DQA1*0101-DQB1*0501 haplotypes which were less frequent in IDDM patients. Comparison of transmitted with non-transmitted haplotypes in IDDM families showed a slight but not significant decrease in TAP2B allele frequency on transmitted (3 of 37) vs non-transmitted (2 of 9) HLA DQA1*0501-DQB1*0201 haplotypes. No other differences were observed. Twenty-four unrelated DQA1*0501-DQB1*0201 haplotypes from non-diabetic families had a TAP2B allele frequency (4 %) similar to that in IDDM haplotypes. These findings suggest that the decreased TAP2B allele frequency in Italian IDDM patients is due to HLA DQ haplotype differences between IDDM patients and control subjects, and do not support a contribution to IDDM risk by the TAP2 locus. [Diabetologia (1995) 38: 968–974]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Antigen presentation ; TAP peptide transporter gene ; HLA class II ; insulin-dependent diabetes mellitus ; linkage disequilibrium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The TAP2 gene, located in the HLA class II region, encodes a subunit of a transporter involved in the endogenous antigen-processing pathway, and has been suggested to contribute to the genetic risk for insulin-dependent diabetes (IDDM). In order to determine whether the TAP2 locus modulates the risk conferred by HLA DQ loci, HLA DQA1-DQB1-TAP2 haplotypes were analysed in 48 IDDM probands, their first degree relatives, and in 62 normal control subjects. A decreased frequency of the TAP2B allele was confirmed in this IDDM cohort (12 vs 28% in control subjects, p c 〈0.05). Analysis of 73 informative meiotic events in IDDM and control families demonstrated a recombination fraction between HLA DQB1 and TAP2 loci of 0.041 (Log of the odds score=16.5; p〈10−8) indicating strong linkage between these loci. Family haplotype analysis demonstrated linkage disequilibrium between TAP2 and HLA DQA1-DQB1, and showed that the reduced frequency of TAP2B was associated with its absence on the IDDM susceptible DQA1*0301-DQB1*0302 haplotype, its low frequency on DQA1*0501-DQB1*0201, and the association of TAP2B with DQA1*0101-DQB1*0501 haplotypes which were less frequent in IDDM patients. Comparison of transmitted with non-transmitted haplotypes in IDDM families showed a slight but not significant decrease in TAP2B allele frequency on transmitted (3 of 37) vs non-transmitted (2 of 9) HLA DQA1*0501-DQB1*0201 haplotypes. No other differences were observed. Twenty-four unrelated DQA1*0501-DQB1*0201 haplotypes from non-diabetic families had a TAP2B allele frequency (4%) similar to that in IDDM haplotypes. These findings suggest that the decreased TAP2B allele frequency in Italian IDDM patients is due to HLA DQ haplotype differences between IDDM patients and control subjects, and do not support a contribution to IDDM risk by the TAP2 locus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Organic Magnetic Resonance 33 (1995), S. 657-663 
    ISSN: 0749-1581
    Keywords: NMR ; 1H NMR ; 13C NMR ; dimers and timers of 3-hexylthiophene ; poly(3-hexylthiophene) ; 1H, 13C inverse detection ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The 1H and 13C signals of the hexyl chains of the title compounds were fully assigned. The regiochemical features of the aliphatic region of proton and carbon spectra were analysed in dimers and trimers. Dimers and trimers proved to be reliable model compounds in the regiochemical assignment of poly(3-hexylthiophene) even when the aliphatic region of proton and carbon spectra was involved. The chemical shifts of the protons of CH2(α)s and of the hexyl chain as a whole and those of the first three aliphatic carbons appear to be the most significant.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...