Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (2)
  • 6-thiouric acid  (1)
  • Life and Medical Sciences  (1)
  • 1
    ISSN: 1432-1041
    Keywords: azathioprine ; 6-thiouric acid ; 6-mercaptopurine ; renal transplantation ; pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The immunosuppressive activity of azathioprine (AZA) is unpredictable and depends on the formation of intracellular thiopurine ribonucleotides. However, the quantification of these active thiopurines presents difficult analytical problems. It has recently been postulated that plasma concentrations of 6-thiouric acid (6-TU) and 6-mercaptopurine (6-MP), metabolites of AZA, may provide more readily measurable indices of the pharmacologic activity of AZA. In order to evaluate the utility of 6-TU and 6-MP plasma concentrations in monitoring AZA therapy, we studied their pharmacokinetics in 6 renal transplant patients, and their in vitro immunosuppressive potency in a mixed lymphocyte proliferation assay. A peak plasma 6-TU concentration of 710.7 ng/ml was observed at 3.8 h after oral dosing. Good correlation was observed between the elimination t1/2 of 6-TU and serum creatinine, and between AUC over 24 h and serum creatinine. However, we did not observe a second peak in plasma 6-TU concentration that could be attributed to the degradation of active AZA metabolites. 6-MP plasma concentrations in the patients were low (mean peak concentration 36.0 ng/ml) and rapidly disappeared within 8 h. In vitro immunosuppressive activity could not be demonstrated for 6-TU over a concentration range of 1.25 ng/ml to 0.25 mg/ml. We conclude that 6-TU is pharmacologically inert and is primarily eliminated by the kidneys. Our findings currently do not support the use of plasma concentrations of 6-TU or 6-MP to monitor AZA therapy. In order to optimize AZA therapy, analytical techniques that are technically feasible and that can directly quantify the active intracellular thiopurines are being explored.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 138 (1989), S. 338-348 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We report here the effects of growth conditions and myogenic differentiation on rat myoblast hexose transport activities. We have previously shown that in undifferentiated myoblasts the preferred substrates for the high (HAHT)- and low (LAHT)-affinity hexose transport systems are 2-deoxyglucose (2-DG) and 3-O-methyl-D-glucose (3-OMG), respectively. The present study shows that at cell density higher than 4.4 × 104 cells/cm2, the activities of both transport processes decrease with increasing cell densities of the undifferentiated myoblasts. Since the transport affinities are not altered, the observed decrease is compatible with the notion that the number of functional hexose transporters may be decreased in the plasma membrane. Myogenic differentiation is found to alter the 2-DG, but not the 3-OMG, transport affinity. The Km values of 2-DG uptake are elevated upon the onset of fusion and are directly proportional to the extent of fusion. This relationship between myogenesis and hexose transport is further explored by using cultures impaired in myogenesis. Treatment of cells with 5-bromo-2′-deoxyuridine abolishes not only myogenesis but also the myogenesis-induced change in 2-DG transport affinity. Similarly, alteration in 2-DG transport affinity cannot be observed in a myogenesis-defective mutant, D1. However, under myogenesis-permissive condition, the myogenesis of this mutant is also accompanied by changes in its 2-DG transport affinity. The myotube 2-DG transport system also differs from its myoblast counterpart in its response to sulfhydryl reagents and in its turnover rate. It may be surmised from the above observations that myogenesis results in the alteration of the turnover rate or in the modification of the 2-DG transport system. Although glucose starvation has no effect on myogenesis, it is found to alter the substrate specificity and transport capacity of HAHT. In conclusion, the present study shows that hexose transport in rat myoblasts is very sensitive to the growth conditions and the stages of differentiation of the cultures. This may explain why different hexose transport properties have been observed with myoblasts grown under different conditions.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...