Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 68.35 ; 68.55 ; 82.40
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Epitaxial NiSi2 islands have been grown on Si(111) substrates by the direct reaction of nickel vapour with the silicon substrate in ultra-high vacuum at 400° C. Growth kinetics was shown to depend on the orientation of the islands: A-oriented islands grow about ten times faster than B-oriented ones, with the ratio of the advance rates of the main growth fronts even reaching 30. Applying plan-view transmission electron microscopy and high-resolution electron microscopy of cross sections, a corresponding difference was found in the structure of the NiSi2/Si(111) growth front: Steps at the B-oriented growth front were of three or six interplanar (111) spacings in height, whereas at the A-oriented growth front step-like defects of less than one interplanar (111) spacing in height were observed. These observations are explained by an atomic-scale model of the solid-state reaction, which involves the diffusion of nickel to the interfaces and the nucleation and subsequent lateral propagation of interfacial steps. The difference in the reaction kinetics originates from the presence of kinetic reaction barriers at the NiSi2/Si(111) growth fronts, the barrier at the B-front being higher owing to the lower formation rate of steps of triple atomic height than that of steps of lower height at the A-NiSi2/Si(111) growth front.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0630
    Keywords: 61.16Di ; 61.70Br ; 61.80Lj
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Cross-sectional high resolution transmission electron microscopy has been used to obtain direct information on the in-depth radiation damage distribution of weakly damaged GaAs by Si-ion implantation. A comparison is made between the experimental data and the calculated (using TRIM computer simulations) deposited energy by nuclear stopping for the same conditions. In particular a diffusion zone, with 200–300 Å width, of high point defect concentration beyond the damage peak is detected. These point defects are interpreted as As interstitials. By direct observation, information concerning the damage- and radiation-enhanced diffusion in implanted III–V compound semiconductors is obtained.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...