Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 66.30jt ; 61.70Wp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Using the hydrogen neutralization of the boron acceptor, the diffusion of hydrogen is investigated in the temperature range 20 °–160 °C. The hydrogenation is performed by low-energy implantation. We observe a fast initial hydrogen migration, followed by a long-time diffusion phase that is described by an effective diffusion coefficientD eff=D 0 eff exp(−E a/kT) withD 0 eff–cm2s−1 andE a=(0.83±0.05) eV. No deeper hydrogen migration is detected for implantation times longer than − 30 min. Our data are explained by the build-up of a large amount of molecular hydrogen beneath the surface, which strongly hinders the transfer of the implanted hydrogen to the bulk. The thermal reactivation kinetics of the neutralized boron show a rapid initial step followed by a longtime thermally activated second order phase, which is limited by the recombination of hydrogen into molecules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...