Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 78.55DS ; 61.80Jh ; 71.35 +z
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We report on a photoluminescence study of silicon samples subjected to different dry etching processes. Several luminescence lines, known from defects produced by high-energy irradiation, manifest damage of the crystalline material. Noble gas ion beam etching (using Ne+, Ar+, Kr+, and Xe+) with ion energies as low as 400 eV produces characteristic luminescence lines which correspond to defects within a 200–300 Å thick surface layer. Incorporation of carbon during CF4 reactive ion etching produces the familiar G-line defect. The G-line photoluminescence intensity in our samples is directly correlated with the substitutional carbon concentration, as determined by infrared absorption measurements before the etch process; we therefore suggest that a simple method to determine the substitutional carbon concentration in a crystalline silicon sample is a standard dry etching process and a comparison of the resulting G-line photoluminescence intensity to a calibrated sample. The sensitivity of this method seems to be better than 1014 carbon atoms/cm3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...