Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 10 (1994), S. 491-496 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; ARS1 ; DNA replication, mitotic ; DNA replication, premeiotic ; plasmid integration ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We have investigated the significance of the chromosomal replication origin, ARS1, during the entire life cycle of yeast. This was done by substituting the chromosomal copy with a series of ars1 deletion mutants. It was shown that the ARS1 replication origin is not essential for mitotic or premeiotic DNA replication since no effect on growth, chromosomal loss rate and spore viability was observed in the ars1 mutant strains. We conclude that replication origins are abundantly, present in the yeast genome and that the removal of a single replication origin is compensated for by replication forks emanating from neighbouring origins.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0749-503X
    Keywords: yeast ; ARS1 ; RAD6 ; scaffolds/SARs ; replacement recombination ; Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Here we show that the ubiquitin-conjugating enzyme Rad6p plays a crucial role in locus-specific replacement recombination in the TRP1-ARS1 region. In rad6-1 strains, where this ubiquitination activity is modified, homologous recombination across a 150 bp continuous region is completely abolished. Our results unambiguously identified the ARS1 scaffold attached region (SAR) as being the region where this impediment for replacement recombination is located, since a merging of the location of the recombination impediment and binding properties in a scaffold exchange assay with deletion mutations was observed. Our observations strongly support the notion of torsionally separated chromosomal domains being organized by SARs and scaffold proteins, and being dynamically realigned as a consequence of ubiquitination and proteolysis.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...